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ASYMPTOTIC STABILITY FOR EQUILIBRIA
OF NONLINEAR SEMIFLOWS

WITH APPLICATIONS TO
ROTATING VISCOELASTIC RODS, PART I

Chong-Ye Xu1 — Jerrold E. Marsden2

Dedicated to Louis Nirenberg

1. Introduction

This paper establishes abstract results, which extend those of Potier-Ferry
and Sobolevskĭı, on global existence and stability of solutions to quasilinear
equations near an equilibrium point whose spectrum lies in the strict left half
plane. The result may be regarded as a version of the linearization principle
for quasilinear systems in a context where the main difficulty is to show that
near the equilibrium shocks are suppressed by small damping. In the second
part to this work, applications will be made to the dynamics of rods undergoing
uniform rotation and satisfying the formal stability criteria based on the energy-
momentum method of Simo, Posbergh, and Marsden.

The stability of relative equilibria of dissipationless geometrically exact rods
moving in space was analyzed by Simo, Posbergh, and Marsden [1990]. Applying
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the energy-momentum method, they obtained sufficient conditions for the for-
mal stability of these relative equilibria. For these partial differential equations
the theory only gives conditional stability since basic existence and uniqueness
questions remain a difficulty due to the quasilinear nature of the equations and
the associated problem of shock formation.

In this paper we prove that in the presence of dissipation (viscoelastic dissi-
pation, for instance), formal stability also ensures the global existence of smooth
solutions and nonlinear asymptotic dynamical stability for relative equilibria of
geometrically exact rods (shells, etc.) moving in space. Since the system is free
to rotate, the stability results are modulo appropriate rotations.

Early work in this direction was done by Browne [1978], who considered the
problem of existence, uniqueness and stability for the quasilinear partial differen-
tial equations governing the motion of nonlinearly viscoelastic one-dimensional
bodies.

Results obtained. This study will consist of two parts. In the first part,
we shall look at the fixed points of semiflows in a Banach space. We will prove
an abstract version of the linearization principle type which states that

if some modest continuity conditions are satisfied and if the lin-
earized systems have eigenvalues all with negative real parts, then
these fixed points are locally asymptotically stable in their neigh-
borhoods, and we have global existence for solutions in these neigh-
borhoods.

Our result generalizes the linearization principle of Potier-Ferry [1981] and
is more convenient for the kind of applications we intend, which adopt the geo-
metrical formulation developed in Simo, Marsden, and Krishnaprasad [1988].

The above result will be applied to the fixed points of evolution equations in
a Banach space. Sobolevskĭı [1966] established some basic results about the exis-
tence and continuity of solutions to Cauchy problems for equations of parabolic
type in a Banach space. We will make use of these results to find conditions on
the evolution equation that guarantee the asymptotic stability of fixed points
and global existence of solutions in the neighborhood of fixed points.

In Part II, we shall analyze some relative equilibria of viscoelastic rods moving
in space, using the two-director Cosserat rod model. This model satisfies the
invariance requirements under superposed rigid body motions and imposes no
restrictions on the degree of allowable deformations. By a relative equilibrium
we mean a dynamical solution z(t) which is also a group orbit: z(t) = exp(tξ) ·ze

for some Lie algebra element ξ. In our situation relative equilibria are uniformly
rotating solutions. Stability itself is, as we have already stated, taken relative to
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group orbits, and in our case taken modulo rotations about the axis of rotation
of the equilibrium solution.

Part II will prove that

the equations of motion for geometrically exact rods with dissipa-
tion and linearized at a relative equilibrium generate an exponen-
tially decaying holomorphic semigroup.

We do this by modifying the techniques of Potier-Ferry [1982], which in turn
are essentially based on Sobolevskĭı’s theory of equations of parabolic type in a
Banach space and are used to prove the stability of static equilibria of elastic
bodies moving freely in space.

Finally, we write the equations of motion for hyperelastic geometrically exact
rods moving with a viscoelastic dynamical response in the abstract form

du

dt
= G(u).

These equations have the form of Hamiltonian equations with dissipation and
the potential energy used is the augmented stored energy potential. Applying
our abstract result on the fixed points of semiflows in a Banach space to this
evolution system, we prove that

the relative equilibria of hyperelastic rods in the presence of vis-
coelastic dissipation are asymptotically stable if they are formally
stable, and that the solutions to the equations of motion in the
neighborhood of a relative equilibrium exist and are smooth for all
time and decay exponentially to the relative equilibrium.

We believe the approach in this work also applies to the case of thermoelas-
ticity as well as elastic shells and three-dimensional elastic bodies.

2. Stability of fixed points of semiflows

In this section we consider the stability of the equilibria of semiflows (and
flows) in a Banach space.

2.1. Notation. Let E be a Banach space and U an open subset of E. Let
V be a neighborhood of U ×{0} in U ×R (or U ×R+) such that for each x ∈ V ,
we have

(i) ({x} ×R) ∩ V = {x} × (a, b) for some open interval (a, b) containing 0;
(ii) in the case of U × R+, ({x} × R) ∩ V = {x} × [0, a) for some a > 0.

We will write Ft ≡ F ( · , t) for any map F : V → E. We call a map F : V → E

or Ft a flow or semiflow if Ft satisfies

(i) F0 = Id (the identity map);
(ii) Ft ◦ Fs = Ft+s whenever Ft, Fs and Ft+s are all defined.



274 C. Y. Xu — J. E. Marsden

A point u0 ∈ U is said to be a fixed point of the flow or semiflow Ft if
Ft(u0) = u0 for all t (for which Ft is defined). The time for which Ft(u) exists
will be called the lifetime of u.

We shall denote the space derivative by Du, or by D.

2.2. Boundedness and joint continuity of space derivatives. Let Ft

be a semiflow on a Banach space E. Assume that

A-I u0 is a fixed point of the semiflow;
A–II there exist T0 > 0 and a neighborhood U0 of u0 such that each u ∈ U

has a positive lifetime Tu ≥ T0;
A–III Ft(u) is continuous in t for t > 0 and fixed u over U0 × [0, T0];
A–IV DuFt(u) is norm-continuous in u for fixed t ∈ (0, T0];
A–V DuFt(u) is strongly continuous in t for fixed u ∈ U0.

The following lemma is a modification of Lemma 8A.4, p. 260 of Marsden and
McCracken [1976], which in turn is based on Chernoff and Marsden [1972].

Lemma 2.1. Let un → u0 in E and δ > 0. There exists a dense subset G

of [δ, T ] such that if tm → t0 ∈ G, then

(a) limm,n→∞ ‖DFtm(un)−DFtm(u0)‖ = 0;
(b) limm,n→∞DFtm

(un)x = DFt0(u0)x for fixed x ∈ E.

Proof. For ε > 0, set

Gn,ε = {t ∈ [δ, T ] | ‖DFt(ul)−DFt(u0)‖ ≤ ε for all l ≥ n}.

The set Gn,ε is closed because DFt(u) is strongly continuous in t. Assume
t̃n ∈ Gn,ε and t̃n → t̃. Let x be an arbitrary unit vector and l ≥ n. It is obvious
that

‖DF
et(ul)x−DF

et(u0)x‖ = lim
n→∞

‖DF
etn

(ul)x−DF
etn

(u0)x‖ ≤ ε.

Hence, ‖DF
et(ul)−DF

et(u0)‖ ≤ ε since x is arbitrary. Thus, t̃ ∈ Gn,ε.
Also, we have

∞⋃
n=1

Gn,ε = [δ, T ],

since DFt(u) is norm-continuous in u for fixed t. It now follows from the Baire
Category Theorem that some of the Gn,ε’s have nonempty interiors. Thus,

Gε =
∞⋃

n=1

Int(Gn,ε)

is nonempty. We claim that Gε is dense in [δ, T ].
Otherwise, there would be at least one closed interval [a, b] ⊂ [δ, T ] with the

property that [a, b] ∩ Gε = ∅. Applying the same argument to [a, b], one gets a
nonempty open subset G

[a,b]
ε of [a, b] contained in Gε, which is a contradiction.
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Next, we set

G =
∞⋂

k=1

G1/k,

where G1/k is constructed like Gε. Since it is a countable intersection of open
dense subsets of [δ, T ], G is itself dense in [δ, T ]. Pick any t0 ∈ G. Since each
G1/k is open, there is a neighborhood Uk of t0 contained in Gnk,k for some nk.
For n ≥ nk and large m such that tm ∈ Uk,

‖DFtm
(un)−DFtm

(u0)‖ ≤ 1/k.

Therefore, (a) is true. As for (b), for any fixed x ∈ E, we can find M > 0 such
that

‖DFtm(u0)x−DFt0(u0)x‖ ≤ 1/k

and tm ∈ Uk for m ≥ M . Hence,

‖DFtm
(un)x−DFt0(u0)x‖
≤ ‖DFtm(un)−DFtm(u0)‖ · ‖x‖+ ‖DFtm(u0)−DFt0(u0)‖ · ‖x‖

≤ 1
k

(‖x‖+ 1)

for all n ≥ nk and m ≥ M . �

Another basic property we will need is:

A-VI DFt(u0) is norm-continuous in t for t ∈ (0, T0], i.e.,

lim
t→t0

‖DFt(u0)−DFt0(u0)‖ = 0

for any t0 ∈ (0, T0].

Proposition 2.2. If the semiflow also satisfies A-VI, and if un → u0 and
tn → t0 > 0, then the limit

Tx = lim
n→∞

DFtn
(un)x

defines a bounded operator T on E and

lim
n→∞

‖T −DFtn
(un)‖ = 0.

Proof. The assertion follows if we can show that DFtn
(un) is a Cauchy

sequence (by the Banach–Steinhaus Theorem, see e.g. Theorem I.1.8, p. 55 of
Dunford and Schwartz [1953]).

Let G be constructed as in Lemma 2.1. Pick t̃ ∈ G such that 0 < t̃ < t0 and
let τn := tn − t0 + t̃. We write

ϕt(u) ≡ DFt(u), ut ≡ Ft(u).
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By Lemma 2.1(a),

(2.1) lim
m,n→∞

‖ϕτm
(un)− ϕτm

(u0)‖ = 0.

Now

‖ϕtm(um)− ϕtn(un)‖
≤ ‖ϕtm(um)− ϕtm(u0)‖+ ‖ϕtm(u0)− ϕtn(u0)‖+ ‖ϕtn(u0)− ϕtn(un)‖

and

‖ϕtm
(um)− ϕtm

(u0)‖ ≤ ‖ϕt0−et(u
τm
m ) ◦ (ϕτm

(um)− ϕτm
(u0))‖

+ ‖[ϕt0−et(u
τm
m )− ϕt0−et(u0)] ◦ ϕτm

(u0)‖.

Assumptions A-III and A-IV on Ft(u) ensure that Ft(u) is separately con-
tinuous in u ∈ U0 and t > 0, hence also jointly continuous in u and t for
(u, t) ∈ U×(0, T0]. (See Marsden and McCracken [1976], Theorem 8A.3, p. 260.)
We thus have

uτm
m → u0

and hence
‖ϕt0−et(u

τm
m )− ϕt0−et(u0)‖ → 0.

Also ‖ϕtm
(u0)‖ → ‖ϕt0(u0)‖ by A-VI. Therefore, noting (2.1), we can find

N1 > 0 such that
‖ϕtm(um)− ϕtm(u0)‖ < ε/3

for all m > N1, where ε > 0 is given.
Similarly, we find N2 > N1 such that

‖ϕtn
(u0)− ϕtn

(un)‖ < ε/3

for all n > N2.
Finally, by A-VI one finds N > N2 such that if m,n > N , then

‖ϕtm(u0)− ϕtn(u0)‖ < ε/3

for all m,n > N . It follows from the above inequalities that for m,n > N ,

‖ϕtm
(um)− ϕtn

(un)‖ < ε,

and hence, ϕtn
(un) is a Cauchy sequence. �

The next basic property we need is

A-VII Given any x ∈ E, there exist Mx > 0, ε > 0, and a neighborhood Ux of
u0 such that

‖DFt(u)x−DF0(u)x‖ ≡ ‖DFt(u)x− x‖ ≤ Mx,

for all 0 ≤ t < ε and u ∈ Ux.
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Proposition 2.3. Assume in addition that Ft( · ) satisfies A-VII. Then
there exist δ > 0, M > 0, and a neighborhood Ũ of u0 such that

‖DFt(u)‖ ≤ M

for all u ∈ Ũ and t ∈ [0, δ].

Proof. This is a consequence of A-VII and the Uniform Boundedness Prin-
ciple. For the purpose of contradiction, suppose that ‖DFt(u)‖ is unbounded
over any U × [0, δ], where U is a neighborhood of u0. Thus, for any n ∈ N, there
exist u

(n)
k , k = 1, 2, . . . , and t

(n)
k,m, m = 1, 2, . . . , satisfying

lim
m→∞

t
(n)
k,m = 0, r

(n)
k ≡ ‖u(n)

k − u0‖ ↘ 0, and ‖DF
t
(n)
k,m

(u(n)
k )‖ ≥ n.

Taking subsequences, one gets sequences un and tn that satisfy

tn ↘ 0, rn ≡ ‖un − u0‖ ↘ 0, and ‖DFtn
(un)‖ ≥ n.

It is obvious from A-VII that ‖DFtn(un)x − x‖ → 0 as n → ∞. Hence,
{DFtn

(un)x} is bounded for any given x ∈ E, and by the Uniform Bound-
edness Principle, there is some M > 0 such that, for all n, ‖DFtn

(un)‖ < M,

contradicting what we deduced from our supposition. �

2.3. Exponential decay of the spatial derivative

Proposition 2.4. Let Ft( · ) be a semiflow satisfying A-I through A-VI. If

‖DFt(u0)‖ ≤ exp(−σt)

for t > 0, and for some σ > 0, then for any given δ ∈ (0, T0] and 0 < σ′ < σ one
can find a neighborhood U of u0 where

‖DFt(u)‖ ≤ exp(−σ′t)

for all u ∈ U0 and t ∈ (δ, T0].

Proof. First we observe the following three points:

(i) Since exp(−σ′t) > exp(−σt) for t > 0 and DFt(u) is norm-continuous in
u when t is fixed, there exists rt ∈ (0,∞) or rt = ∞ such that ‖u − u0‖ < rt

implies ‖DFt(u)‖ < exp(−σ′t) and for finite rt, one can find at least one ut

satisfying

‖ut − u0‖ = rt and ‖DFt(ut)‖ ≥ exp(−σ′t).

(ii) The existence of U in this proposition is equivalent to

(2.2) r̃ = inf
t∈[δ,T0]

{rt} > 0.
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(iii) Suppose r̃ = 0. Then one would be able to find a sequence tn ∈ [δ, T0]
with corresponding rn ≡ rtn ↘ 0, and {un} ⊂ U0 satisfying

‖un − u0‖ = rn, ‖DFtn
(un)‖ ≥ exp(−σ′tn).

Here, without loss of generality, by passing to a subsequence if necessary, we can
assume tn → t0 ∈ [δ, T0].

We will prove that r̃ = 0 leads to a contradiction. Let tn, un, rn be as in (iii).
By Proposition 2.2,

T = lim
n→∞

DFtn
(un) ∈ B(E)

(the space of bounded operators on E) and

‖T‖ > exp(−σt0),

since ‖DFtn
(un)‖ ≥ exp(−σ′tn), tn → t0 > 0, and exp(−σt0) > exp(−σ′t0).

Hence, for large n one can find some ε0 > 0 such that ‖Ftn
(un)‖ ≥ exp(−σt0)

+ ε0. On the other hand, starting with [δ′, T ], 0 < δ′ < δ, we obtain a dense
subset G of [δ′, T ] as in Lemma 2.1. Pick t̃ ∈ G such that δ′ < t̃ < t0 and set

τn ≡ tn − t0 + t̃.

Then τn ∈ [δ′, T0] for large n and τn → t̃ ∈ G. The assumptions A-III and A-IV
on Ft(u) guarantee the joint continuity of Ft(u) at (u, t) ∈ U0 × (0, T0]. Hence

lim
n→∞

Fτn
(un) = F

et(u0) = u0.

Therefore,
DFt0−et(Fτn

(un)) → DFt0−et(u0)

in norm as n →∞. Now pick any x in E. Then

DFτn
(un)x → DF

et(u0)x

in norm by virtue of Lemma 2.1(b). It follows that

lim
n→∞

‖DFtn(un)x‖ = lim
n→∞

‖DFt0−et(Fτn(u0)) ◦DFτn(un) · x‖

= ‖DFt0−et(u0) ◦DF
et(u0) · x‖

= ‖DFt0(u0) · x‖ ≤ ‖DFt0(u0)‖ · ‖x‖ ≤ exp(−σt0)‖x‖.

Thus, since x is arbitrary,

‖T‖ = ‖ lim
n→∞

DFtn
(un)‖ ≤ exp(−σt0),

a contradiction. �

For the next proposition, we need the following lemma on the upper semi-
continuity of the spectrum of a bounded operator on a Banach space (see The-
orem 3.1 and Remark 3.3 on p. 208 of Kato [1977]).
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Lemma 2.5. The spectrum σ(T ) is an upper semicontinuous function of T ∈
B(E), that is, for any T ∈ B(E) and ε > 0, there exists a δ > 0 such that

dist(σ(S), σ(T )) ≡ sup
λ∈σ(S)

(λ, σ(T )) < ε

if ‖S − T‖ < δ.

Proposition 2.6. Let Ft be a semiflow on E satisfying A-I through A-VI.
Assume also that the spectrum of DFt(u0) lies inside and at a positive distance
away from the unit circle for any t ∈ (0, T0]. Then, given any 0 < δ < T0, there
is an equivalent norm | · | on E and σ > 0 such that

|DFt(u0)| < exp(−σt)

for all t ∈ [δ, T0].

Proof. Since Ft is a semiflow and u0 is a fixed point, denoting DFt(u0) by
ϕt, we get from the Chain Rule

ϕt+s(x) = ϕt ◦ ϕs(x), ϕ0 = Id,

for all x ∈ E and t, s such that ϕ is defined. Also, by assumption

s- lim
t↘0

ϕt = ϕ0 = Id.

Let t1 + t2 = t′1 + t′2, ti, t
′
i ∈ [0, T0], i = 1, 2. It is easy to verify that

ϕt1 ◦ ϕt2 = ϕt′1
◦ ϕt′2

.

Moreover, both ϕt1 ◦ . . . ◦ ϕtn
and ϕt′1

◦ . . . ◦ ϕt′n are well-defined if

n∑
i=1

ti =
n∑

i=1

t′i for ti, t
′
i ∈ [0, T0], i = 1, . . . , n,

and

ϕt1 ◦ . . . ◦ ϕtn
= ϕt′1

◦ . . . ◦ ϕt′n .

Therefore, we can extend ϕt to [0,∞) by defining

ϕt = ϕt1 ◦ . . . ◦ ϕtn
,

where ti ∈ [0, T0] and t1 + . . . + tn = t. Thus, ϕt is a C0-semigroup of linear
operators on E.

Let δ ∈ (0, T0) be given. Choose δ0 > 0 such that δ0 < δ and mδ0 = T0 for
some positive integer m. If t′ ∈ [δ0, T0], then

r(ϕt′) ≤ exp(−εt)
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for some positive εt by our assumption on the spectrum of DFt(u0). Pick 0 <

σ′t′ < σt′ , where σt′ · t′ = εt. In view of hypothesis A-VI and Lemma 2.5, there
exists a δt′ such that

r(ϕt) ≤ exp(−δt′ · t)

for all t ∈ (t′ − δt′ , t
′ + δt′). Hence, we have a cover of [δ0, T0] of the form

{(t− δt, t + δt) | t ∈ [δ0, T0]}

with the δt’s chosen in a manner similar to the above δt′ . Furthermore, [δ0, T0]
being compact, a finite subcover exists, say,

(t1 − δt1 , t1 + δt1), . . . , (tn − δtn
, tn + δtn

)

with corresponding σ′1, . . . , σ
′
n > 0. Setting σ = min{σ′1, . . . , σ′n}, we now have

r(ϕt) ≤ exp(−σt)

for all t ∈ [δ0, T0].
If, in choosing δ0 = T0/m, we always pick an even m > 2, any t ∈ [δ0,∞)

can be written as t = 2n0δ0 + t′ with t′ ∈ [δ0, T0] and n0 ∈ N. It follows that

r(ϕt) = lim
n→∞

‖ϕn
2n0δ0+t′‖1/n ≤ lim

n→∞
‖ϕn

2δ0
‖1/n . . . ‖ϕn

2δ0
‖1/n · ‖ϕn

t′‖1/n ≤ e−σt.

Thus, r(ϕt) ≤ e−σt holds for t ∈ [δ0,∞), and ‖ϕn
t ‖/e−nσt is uniformly bounded

from above for all t ≥ δ and for all n ∈ N. This allows us to define a new norm
on E as follows (cf. Abraham, Marsden, and Ratiu [1988], Lemma 4.3.8, p. 301):

|x| = sup
n≥0,t≥δ

‖ϕn
t (x)‖/e−nσt

for x ∈ E. Clearly this defines a norm, and the two norms ‖ · ‖ and | · | are
equivalent because

‖x‖ ≤ |x| ≤ ( sup
n≥0,t≥δ

‖ϕn
t ‖/e−nσt) · ‖x‖

for any x ∈ E. When estimating |ϕt0(x)| we need to consider two cases. If the
supremum is assumed at n = 0,

sup
n≥0,t≥δ

‖ϕn
t (ϕt0(x))‖/e−nσt = ‖ϕt0(x)‖,

we get

|ϕt0(x)| = ‖ϕt0(x)‖ ≤ e−σt0 sup
n≥0,t≥δ

‖ϕn
t (x)‖/e−nσt = e−σt0 |x|.

Otherwise, we have

|ϕt0(x)| = sup
n≥0,t≥δ

‖ϕn
t (ϕt0(x))‖/e−nσt

≤ e−σt0 sup
n≥0,t′≥δ

‖ϕn
t′(x)‖/e−nσt′ = e−σt0 |x|.

Thus, under this new norm |ϕt| < e−σt for all x ∈ [δ,∞). �
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2.4. The main theorem. There are two versions of the main result. We
begin with the following preparatory case.

Proposition 2.7. Assume that the semiflow Ft( · ) satisfies A-I through A-
VII, and ‖DFt(u0)‖ ≤ exp(−σt) for all t ∈ R+ and some σ > 0. We have

(a) Global existence of integral curves in a neighborhood of u0: there exists
a neighborhood U of u0 such that every u ∈ U has infinite lifetime.

(b) Asymptotic stability at u0:

lim
t→∞

‖Ft(u)− u0‖ = 0 for all u ∈ U.

Proof. By Proposition 2.3, there are δ > 0, M > 0 and a neighborhood U1

of u0 such that

‖DFt(u)‖ ≤ M

for all u ∈ U1 and t ∈ [0, δ]. Fix δ < T0/2 and U1. We find a neighborhood U2

of u0 as in Proposition 2.4 such that

‖DFt(u)‖ ≤ exp(−δ′t)

for all t ∈ [δ, T0] and u ∈ U2, for some δ′. Both U1 and U2 are chosen to be
subsets of some U0 where A-II is satisfied. Now let U ⊂ U1 be a neighborhood
of u0 such that

M(u− u0) ∈ U2

for all u ∈ U0. Taking note of the estimate

‖Ft(u)− u0‖ = ‖Ft(u)− Ft(u0)‖ =
∥∥∥∥∫ 1

0

DFt(su + (1− s)u0) · (u− u0) ds

∥∥∥∥
≤

{
M‖u− u0‖ for 0 ≤ δ,

exp(−σ′t)‖u− u0‖ for t ∈ [δ, T0],

we know Ft(u) ∈ U1 ∩ U2, hence it can be extended in time by at least T0.
For t > 0, write t = n(t)T0 + t′, where T0 > t′ ≥ 0 and n(t) ∈ N. By

induction, one gets the estimate

‖Ft(u)− u0‖ = ‖Fn(t)T0 ◦ Ft(u)− Fn(t)T0 ◦ Ft′(u0)‖

=
∥∥∥∥∫ 1

0

DF(n(t)−1)T0(. . .) ◦DFT0(Ft′(u)− u0) ds

∥∥∥∥
≤ M exp(−n(t)σ′T0) · ‖u− u0‖.

Without loss of generality M ≥ 1 is assumed here. Thus, the semiflow can be
extended infinitely in time for every u in U and limt→∞ ‖Ft(u)− u0‖ = 0, since
n(t) →∞ as t →∞. �
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Combining Propositions 2.2 through 2.7, we obtain the following theorem
on the asymptotic stability of the fixed points of flows (semiflows) in a Banach
space and the global existence of (semi-)flows in their neighborhood.

Theorem 2.8. Let Ft be a semiflow (flow) in a Banach space E. Assume
that Ft satisfies the hypotheses A-I through A-VII. Assume also that the spectrum
σ(DFt(u0)) lies uniformly inside the unit circle for t ∈ (0, T0]. Then there exists
a neighborhood U of u0 such that we have

I Global existence: each u ∈ U has infinite lifetime,
II Asymptotic stability at u0:

lim
t→∞

‖Ft(u)− u0‖ = 0 for all u ∈ U.

3. The evolution equation

3.1. Introduction. Now we investigate the semiflows generated by evo-
lution equations in a Banach space. We shall apply the results we obtained
in Section 2 to flows of evolution equations. More specifically, we shall find
conditions on the evolution

(3.1)
du

dt
= G(u)

which, when satisfied, will guarantee that the equilibrium u0 is asymptotically
stable. In (3.1), G is a map from Y to X , Y and X are Banach spaces and Y
is continuously and densely included in X . Consistent with our applications, we
shall assume that G has the form

G(u) = A(u)u + g(u),

where A(u) is a closed linear operator, and g(u) a C1 nonlinear mapping. Taylor-
expanding g(u) at u0 and combining DuG(u0) with T (u), we can assume that
A : Y → X is a closed linear operator and g is a nonlinear map from Y to X
having the property ‖g(u)‖X = o(‖u− u0‖X ), when we consider the equation in
a neighborhood of u0.

3.2. Notation and terminology. Let us recall some definitions and nota-
tion to be used. A continuous local semiflow on a Banach space Y is a continuous
map F : Y × R+ ⊃ D → Y, where D is an open subset, satisfying

• Y × {0} ⊂ D;
• F (x, 0) = x;
• if F (x, t) ∈ D and (F (x, t), s) ∈ D, then F (x, t + s) ∈ D and

F (x, t + s) = F (F (x, t), s).
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We say G generates the semiflow F (x, t) if F (x, t) is t-differentiable for t ≥ 0
and x ∈ Y, and

d

dt
F (x, t) = G(F (x, t)).

When G depends explicitly on time, we replace the local semiflow F (x, t) by an
evolution operator Ft,s : Y → Y, satisfying

• Ft,t = Id;
• Ft,s ◦ Fs,r = Ft,r when 0 ≤ r ≤ s ≤ t ≤ T , for some T ;

• d

dt
Ft,s(x) = G(Ft,s(x), t).

Let {U(t) | t ≥ 0} be a (C0) semigroup on a Banach space X , A its infini-
tesimal generator defined by

Ax = lim
t↘0

U(t)x− x

t
,

on the domain D(A), that is, the set of those x ∈ X for which the above limit
exists. We say A ∈ G(X ,M, β) if ‖U(t)‖ ≤ Me−tβ . We will also use the notation

Σ(ω, β) = {λ ∈ C | |Arg λ| ≤ π/2 + ω or Re λ ≥ −β}.

Note that the following two conditions are equivalent:

• the spectrum of a linear operator lies uniformly to the left of the imaginary
axis;

• there are positive ω and β such that Σ(ω, β) is contained in the resolvent
set of the operator.

3.3. Sobolevskĭı’s results on parabolic equations in Banach spaces.
We will make use of the following results Sobolevskĭı [1966] obtained for equations
of parabolic type in a Banach space.

Theorem 3.1. Let the operator A(t), t ∈ [0, T ], act in E and have an
everywhere dense domain of definition D not depending on t. For any t, r, s ∈
[0, T ] suppose

‖[A(t)−A(τ)]A−1(s)‖ ≤ C|t− τ |ε

for some ε ∈ (0, 1]. For any λ with Re λ ≥ 0, assume the operator A(t)+λI has
a bounded inverse and

‖[A(t) + λI]−1‖ ≤ C[|λ|+ 1]−1.

Then there exists an evolution operator U(t, τ) which is defined and strongly
continuous for all t and τ such that 0 ≤ τ ≤ t ≤ T . Also, U(t, τ) is uniformly
differentiable in t for t > τ , and

∂U(t, τ)
∂t

+ A(t)U(t, τ) = 0.
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For v0 ∈ E,
v(t) = U(t, 0)v0

defines a unique solution to the Cauchy problem

dv

dt
+ A(t)v = 0 (0 < t < T ), v(0) = v0,

which is continuous for all t ∈ [0, T ] and continuously differentiable for t > 0.
If v0 ∈ D, then v(t) is continuously differentiable for t = 0.

Theorem 3.2. Assume f(t) satisfies the Hölder condition

‖f(t)− f(s)‖ ≤ C|t− s|δ

for some δ ∈ (0, 1]. Then the variation of constants formula

v(t) = U(t, 0)v0 +
∫ t

0

U(t, s)f(s) ds

gives a unique solution to the nonhomogeneous equation

dv

dt
+ A(t)v = f(t),

which is continuous for all t ∈ [0, T ] and continuously differentiable for t > 0.
If v0 ∈ D, then v(t) is continuously differentiable for t = 0. If f(t) is an op-
erator function, then the formula defines a uniformly continuously differentiable
solution.

Finally, we shall need:

Theorem 3.3. Let A0 = A(0, v0) be a linear operator whose domain of
definition D is dense in E. Let the operator A−1

0 be completely continuous in E

and A0 + λI have a bounded inverse satisfying

‖[A0 + λI]−1‖ ≤ C[|λ|+ 1]−1

for any λ with Re λ ≥ 0. For some α ∈ [0, 1) and for any v ∈ E, ‖v‖ ≤ R,
assume the operator A(t, A−α

0 v) is defined in D and satisfies

‖[A(t, A−α
0 v)−A(τ,A−α

0 w)]A−1
0 ‖ ≤ C(R)[|t− τ |ε + ‖v − w‖%]

with ε, % ∈ (0, 1], for any 0 ≤ t, τ ≤ T, ‖v‖ ≤ R, and ‖w‖ ≤ R. In this region,
suppose

‖[f(t, A−α
0 v)− f(τ,A−α

0 w)]A−1
0 ‖ ≤ C(R)[|t− τ |ε + ‖v − w‖%].

Lastly, for some β > α, let v0 ∈ D(Aβ
0 ), and let ‖Aα

0 v0‖ < R. Then there exists
at least one solution of the Cauchy problem

dv

dt
+ A(t, v)v = f(t, v),(3.2)

v(0) = v0,(3.3)
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which is defined on a segment [0, t0), is continuous for t ∈ [0, t0), and continu-
ously differentiable for t > 0. If % = 1, the solution is unique, and we can omit
the assumption on the complete continuity of A−1

0 . The solution can be obtained
by the method of successive approximations in this case.

3.4. Continuity of solutions and evolution systems

Proposition 3.4. Let Ft(u) be the solution of (3.2) corresponding to the
initial condition F0(u) = u ∈ D. Then under the conditions of Theorem 3.2 and

B-I (A′(u)v)x is Lipschitz continuous in u, i.e.,

‖(A′(u1)−A′(u2))v)x‖ ≤ C‖u1 − u2‖ · ‖v‖ · ‖x‖D,

and the Lipschitz estimate
B-II

‖f(u1)− f(u2)‖ ≤ C‖u1 − u2‖,

the solution Ft(u) is continuous in u, uniformly in t ∈ [0, t1] for some t1 < t0.

Proof. Let u(t) = Ft(u0), ũ(t) = Ft(ũ0), and ∆(t) = u(t)− ũ(t). Then

‖(A(u(t))−A(ũ(t)))x‖ =
∥∥∥∥∫ 1

0

[A′(λu(t) + (1− λ)ũ(t))(u(t)− ũ(t))x] dλ

∥∥∥∥
≤ ‖A′(λu(t) + (1− λ)ũ(t))‖ · ‖u(t)− ũ(t)‖ · ‖x‖D.

Now

d∆(t)
dt

= −A(u(t))(u(t)− ũ(t))(3.4)

+ (A(u(t))−A(ũ(t)))ũ(t) + f(u(t))− f(ũ(t)).

It follows that

d

dt
‖∆(t)‖ ≤ ‖A(u(t))‖ · ‖∆(t)‖(3.5)

+ ‖A′(λu(t) + (1− λ)ũ(t))‖ · ‖∆(t)‖ · ‖ũ(t)‖D + C(‖∆(t)‖)
≤ C̃‖∆(t)‖

where C̃ is a positive constant depending on u0, ũ0, and t0. To get this estimate,
we have used the fact that u(t) and ũ(t) are continuous in t, and A′(u) is con-
tinuous in u. Moreover, the constant in the estimate can be chosen to depend
only on t0 and ũ0. Since [0, t1], [0, 1], and {(t, λ) | 0 ≤ t ≤ t1, 0 ≤ λ ≤ 1}
are compact, λu(t) + (1 − λ)ũ(t), ũ(t), and u(t) are continuous, there exists a
connected finite subcover of

{λu(t) + (1− λ)ũ(t) | 0 ≤ t ≤ t1, 0 ≤ λ ≤ 1}
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consisting of open balls contained in D. Also recall that the solution to (3.2)
and (3.3) is the fixed point of the map u(t) 7→ v(t) given by

v(t) = U(t, 0)u0 +
∫ t

0

U(t, s)f(u(s)) ds.

Hence,

‖un+1(t)− u0‖ =
∥∥∥∥(U(t, 0)− U(0, 0))u0 +

∫ t

0

U(t, s)f(un(s)) ds

∥∥∥∥
≤ (1 + e−βt)‖u0‖

+ ( max
0≤t≤t0

‖u(t)− u0‖+ ‖f(u0)‖) ·
1
β

(1− e−βt)

and

max
0≤t≤t0

‖un+1(t)− u0‖ ≤ B(u0, t0) + ( max
0≤t≤t0

‖un(t)− u0‖) ·
1
β

(1− e−βt),

where B(u0, t0) is continuous in u0 and t0. It follows that

max
0≤t≤t0

‖un(t)− u0‖ ≤ eBt0 + ‖u0‖ ·
[

1
β

(1− e−βt)
]n

,

and the solution u(t) satisfies

max
0≤t≤t0

‖u(t)− u0‖ ≤ C(u0, t0).

Thus, if we start with v0 close to u0, for the constant in (3.5) we can find a
constant C̃ depending on ũ0 and t0 only such that

d

dt
‖∆(t)‖ ≤ C̃‖∆(t)‖.

Therefore, by Gronwall’s inequality, max0<t<t1 ‖u(t) − ũ(t)‖ → 0 as ‖u0 − ũ0‖
→ 0, as claimed in the proposition. �

The above proof gives the following estimate which will be used later.

Corollary 3.5. Under the same conditions as in Proposition 2.4,

‖∆(t)‖ ≤ C(ũ0, t0)‖∆(0)‖

for all t ∈ [0, t1].

Proposition 3.6. Let Ft(u) be the solution to (3.2) satisfying the initial
condition F0(u) = u. Let u(t) = Ft(u0), v(t) = Ft(v0), A1(t) = A(u(t)), and
A2(t) = A(v(t)). Assume ‖u0 − v0‖ = δ. Then under the same conditions as in
Proposition 2.2 there exist t1, a constant C and some θ ∈ (0, 1) such that

‖(A1(t)−A2(t))x‖ ≤ Cδ‖x‖D,(3.6)

‖(A1(t)−A2(t)−A1(s) + A2(s))x‖ ≤ Cδ|t− s| · ‖x||D,(3.7)

for all 0 ≤ s ≤ t ≤ t1.
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Proof. Let T (λ, t) = A(λu(t) + (1 − λ)v(t)) and ∆(t) = u(t) − v(t). The
first inequality is obvious from the proof of Proposition 3.4. As for (3.7), rewrite

(A1(t)−A2(t)−A1(s) + A2(s))x

=
∫ 1

0

∂

∂λ
[T (λ, t)− T (λ, s)]x dλ

=
∫ 1

0

{[Tλ(λ, t)− Tλ(λ, s)]∆(t) + Tλ(λ, s)[∆(t)−∆(s)]}x dλ,

and we have the estimate

‖[Tλ(λ, t)− Tλ(λ, s)]∆(t)x‖
= ‖[A′(λu(t) + (1− λ)v(t))−A′(λu(s) + (1− λ)v(s))]∆(t)x‖

≤ C1‖λ(u(t)− u(s)) + (1− λ)(v(t)− v(s))‖ · ‖∆(t)‖ · ‖x‖D

≤ C max
0≤t≤t1

(∥∥∥∥du(t)
dt

∥∥∥∥,

∥∥∥∥dv(t)
dt

∥∥∥∥)
|t− s| · ‖∆(t)‖ · ‖x‖D

≤ Cδ|t− s| · ‖x‖D

by Corollary 3.5, where C is some generic constant. Similarly we get the esti-
mates

‖∆(t)−∆(s)‖ ≤
(

max
0≤t≤t1

∥∥∥∥d∆(t)
dt

∥∥∥∥)
|t− s| ≤ C1δ|t− s|

and

‖Tλ(λ, s)(∆(t)−∆(s))x‖ ≤ C2C3|t− s| · ‖x‖D,

where the bound C2 on ‖Tλ(λ, s)‖ results from (A′(u)v)x being continuous in u.
Combining these estimates, we get (3.7). �

With the above inequalities established, we can now estimate how close
Ux(t, s) and Uy(t, s), the evolution operators corresponding to the solutions
Ft(x) and Ft(y), are to each other. For this end we need the following lemma.
The proof given below follows Sobolevskĭı [1966] and Potier-Ferry [1982].

Lemma 3.7. Under the same conditions as in Proposition 3.4,

‖[A(Ft(x))Ux(t, s)A−1(Fs(x))−A(Ft(y))Uy(t, s)A−1(Fs(y))‖ ≤ Cδ.

Proof. Let

Q(t, s) = A(Ft(x))Ux(t, s)A−1(Fs(x)) =: A(t)U(t, s)A−1(s),

δQ(t, s) = A(Ft(x))Ux(t, s)A−1(Fs(x))−A(Ft(y))Uy(t, s)A−1(Fs(y)),

where we have abbreviated the notation for convenience, and adopted the conven-
tion that δ in front of a quantity denotes the variation of that quantity brought
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about when x is perturbed to y. Then the operator

φ(r) = e−(t−r)A(t)U(r, s)A−1(s)

is strongly differentiable, and integration of φ′(r) from s to t shows that Q(t, s)
is the solution to the Volterra integral equation

Q(t, s) = A(t)e−(t−s)A(t)A−1(s)(3.8)

+
∫ t

s

A(t)e−(t−r)A(t)[A(t)−A(r)]A−1(r)Q(r, s) dr.

It follows that

δQ(t, s) = δ{A(t)e−(t−s)A(t)A−1(s)}(3.9)

+
∫ t

s

δ{A(t)e−(t−r)A(t)}[A(t)−A(r)]A−1(r)Q(r, s) dr

+
∫ t

s

A(t)e−(t−r)A(t)δ{[A(t)−A(r)]}A−1(r)Q(r, s) dr

+
∫ t

s

A(t)e−(t−r)A(t)[A(t)−A(r)]δ{A−1(r)}Q(r, s) dr

+
∫ t

s

A(t)e−(t−r)A(t)[A(t)−A(r)]A−1(r)δQ(r, s) dr.

Since the semigroup generated by A(t) is holomorphic, we have the estimates

‖δA−1(s)x‖ ≤ C1δ‖x‖D,(3.10)

‖δ{A(t)e−(t−s)A(t)}‖ ≤ C2δ/(t− s),(3.11)

‖δ{A(t)e−(t−s)A(t)A−1(s)}‖ ≤ C3δ,(3.12)

and the resulting inequality

‖δQ(t, s)‖ ≤ C3δ + C2δ

∫ t

s

‖[A(t)−A(r)]A−1(r)Q(r, s)‖ dr

+ Cδ

∫ t

s

‖A(t)e−(t−r)A(t)A−1(r)Q(r, s)‖ dr

+ C1δ

∫ t

s

‖A(t)e−(t−r)A(t)[A(t)−A(r)]Q(r, s)‖ dr

+
∫ t

s

‖A(t)e−(t−r)A(t)[A(t)−A(r)]A−1(r)‖ · ‖δQ(r, s)‖ dr.

Since the relevant functions inside the integrals are continuous, we obtain

‖δQ(t, s)‖ ≤ Cδ + B

∫ t

s

sup
s≤r≤t

‖δQ(t, r)‖ dr.

Hence, ‖δQ(t, s)‖ ≤ C̃δ. �
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Proposition 3.8. Assume B-I and B-II. Then Uu(t, s), the evolution sys-
tem for the Cauchy problem (3.2) and (3.3), is norm-continuous in u, where u

is the initial condition in (3.3).

Proof. From Theorem 3.3 it follows that

∂

∂r
(Ux(r, s)− Uy(r, s)) = −[A(Fr(x))Ux(r, s) + A(Fr(y))Uy(r, s)].

Integration from s to t yields

Ux(t, s)− Uy(t, s) = −
∫ t

s

[A(Fr(x))Ux(r, s)A−1(Fs(x))A(Fs(x))

−A(Fr(y))Uy(r, s)A−1(Fs(y))A(Fs(y))] dr.

Hence,

‖[Ux(t, s)− Uy(t, s)]v‖ ≤
∫ t

s

{‖δQ(r, s)A(Fs(x))v‖

+ ‖Q(r, s)[A(Fs(x))−A(Fs(y))]v‖} dr.

The first term has the estimate

‖δQ(r, s)A(Fs(x))v‖ ≤ Cδ‖A(Fs(x))v‖

for some constant C by Lemma 2.1, and from Proposition 3.6 (inequality (3.6))
we get

‖A(Fr(x))Ux(r, s)A−1(Fs(y))[A(Fs(x))−A(Fs(y))]v‖ ≤ C1δ‖v‖D,

where Q(r, s) and δQ(r, s) are as in Lemma 3.7, and δ = ‖x− y‖. Therefore,

lim
‖x−y‖→0

‖Ux(t, s)− Uy(t, s)‖ = 0. �

3.5. Spatial differentiability of solutions. Returning to the evolution
equation (3.1),

du

dt
= G(u, t) = A(u, t)u + g(u, t),

we examine the spatial derivatives of its solutions. The following results will be
used in the proof:

Bounded Perturbation Theorem. If A ∈ G(X ,M, β) (the space of gen-
erators on X with bounds M and β, as defined in Section 3.2) and B ∈ B(X ),
then A + B ∈ G(X ,M, β + ‖B‖M). (See Kato [1977], p. 495.)

Trotter–Kato Theorem. If An ∈ G(X ,M, β) (n = 1, 2, . . .), A ∈
G(X ,M, β) and for λ sufficiently large, (λ− An)−1 → (λ− A)−1 strongly, then
etAn → etA strongly, uniformly on bounded t-intervals. (See Kato [1977], p. 502.)
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Theorem 3.9. Assume conditions of Theorem 3.2 are satisfied. Assume
also that B-I and B-II are satisfied. If Dg(u0) = 0 and Dg is continuous at u0,
then in some neighborhood U of u0 the solution to (3.1), Ft,s(x), is differentiable
with respect to x, with DFt,s(x) being the solution to

(3.13)
∂w

∂t
= [A(Ft(x)) + Dg(Ft(x))]w + A′(Ft(x))w(Ft(x) + w).

Proof. Let ∆(t, s) = Ft,s(x)− Ft,s(y). We have, by construction,

∆(t, s) = Uxx− Uyy +
∫ t

s

[Uxg(F (x))− Uyg(F (y))] ds,

∂∆(t, s)
∂t

= −[A(t, F (x))F (x)−A(t, F (y))F (y)] + g(F (x))− g(F (y)),

∂Ux(t, s)
∂t

= −A(t, Ft,s(x))Ux(t, s),

∂Ux(t, r)
∂r

= Ux(t, r)A(r, Fr,s(x)),

where we have dropped subscripts or arguments in Ft,s(x), Ft,s(y), Ux(t, s) and
Uy(t, s) respectively in the first two equations.

Let ∆t(h) := Ft(x + h)− Ft(x). From Proposition 3.6, and Proposition 3.8,
it follows that

∂

∂t
(Ft(x + h)− Ft(x))

= A(Ft(x + h))Ft(x + h) + g(Ft(x + h))−A(Ft(x))Ft(x)− g(Ft(x))

= A(Ft(x))(∆t(h)) + Dg(Ft(x))(∆t(h)) + o(∆t(h))

+ [A′(Ft(x))∆t(h) + o(∆t(h))]Ft(x) + [A′(Ft(x))∆t(h) + o(∆t(h))]∆t(h)

= [A(Ft(x)) + Dg(Ft(x)) + %(x, h)]∆t(h)

+ [A′(Ft(x))∆t(h) + %̃(x, h)]Ft(x) + [A′(Ft(x))∆t(h) + %̃(x, h)]∆t(h),

where %(x, h) and %̃(x, h) are operators continuous in x and h, whose norms
satisfy

lim
‖h‖→0

‖%(x, h)‖/‖h‖ = 0,(3.14)

lim
‖h‖→0

‖%̃(x, h)‖/‖h‖ = 0,(3.15)

since ‖Ft(x+h)−Ft(x)‖ → 0 as ‖h‖ → 0. Fix x and h. Let ζt(h) be the solution
to

∂ζt(h)
∂t

= [A(Ft(x)) + Dg(Ft(x)) + %(x, h)]ζt(h) + g̃(ζt(h)),(3.16)

ζ0(h) = I,(3.17)
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where

g̃(w) = [A′(Ft(x))w + %̃(x, h)]Ft(x) + [A′(Ft(x))w + %̃(x, h)]w.

Since Dg is continuous at u0 with Dg(u0) = 0, Ft(x) is strongly continuous
in t and ‖eA(Ft(x))‖ ≤ e−tδ for some δ > 0, there exists [0, t0] such that for
t ∈ [0, t0],

(3.18) ‖eA(Ft(x))+Dg(Ft(x))‖ ≤ e−teδ

for some δ̃ > 0, by the Bounded Perturbation Theorem. By the same argument,
we know that there exist [0, t0] and ε > 0 such that for t ∈ [0, t0] and h ≤ ε,

(3.19) ‖eA(Ft(x))+Dg(Ft(x))+%(x,h)‖ ≤ e−teδ.

Therefore, ζt(h) exists over [0, t0] for all h ≤ ε, by Theorem 3.2.
Thus, letting θt(h) := ∆(x, h, t)− ζt(h) · h, we have

∂θt(h)
∂t

= [A(Ft(x)) + Dg(Ft(x)) + %(x, h)]θt(h) + g̃(θt(h)),(3.20)

θ0(h) = 0.(3.21)

We now show that ‖θt(h)‖/‖h‖ → 0 as ‖h‖ → 0. From the preceding two
equalities, we get

∂‖θt(h)‖
∂t

≤ ‖%(x, h)‖ · ‖θt(h)‖+ M‖θ(h)‖

where M > 0 is a constant independent of h. Hence, by (3.14),

(3.22)
∂

∂t

(
‖θ(h)‖
‖h‖

)
≤ ε(‖h‖) + M

(
‖θ(h)‖
‖h‖

)
where ε(‖h‖) → 0 as ‖h‖ → 0. Thus,

(3.23) lim
‖h‖→0

‖Ft(x + h)− Ft(x)− ζt(h) · h‖
‖h‖

= 0

by Gronwall’s inequality. Therefore, DxFt(x) = limh→0 ζt(h), if the limit exists.
Next, we show that limh→0 ζt(h) exists as a result of the Trotter–Kato Theo-

rem. First, we need to prove that ζt(hn) is a Cauchy sequence for hn → 0, which
is equivalent to showing that, for any two h1, h2 < ε, ‖ζt(h1) − ζt(h2)‖ can be
made arbitrarily small if h1, h2 are small enough.

Since

∂ζt(h1)
∂t

= [A(Ft(x)) + Dg(Ft(x)) + %(x, h1)]ζt(h1) + g̃(ζt(h1))

and
∂ζt(h2)

∂t
= [A(Ft(x)) + Dg(Ft(x)) + %(x, h2)]ζt(h2) + g̃(ζt(h1)),
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we have

∂‖ζt(h1)− ζt(h2)‖
∂t

≤ M‖ζt(h1)− ζt(h2)‖+ ‖%(x, h1)ζt(h1)− %(x, h2)ζt(h2)‖.

By (3.14), for any ε > 0 we can find δ > 0 such that

‖%(x, h1)ζt(h1)− %(x, h2)ζt(h2)‖ < ε

if h1, h2 < δ. Thus,

(3.24) ‖ζt(h1)− ζt(h2)‖ ≤ εt0e
Mt0 → 0 for any t ∈ [0, t0],

as h1, h2 → 0.
Before we can apply the Trotter–Kato Theorem, we have to verify that for

λ sufficiently large, (λ−An)−1 → (λ−A)−1 strongly, where An stands for

A(Ft(x)) + Dg(Ft(x)) + %(x, hn),

and A stands for A(Ft(x)) + Dg(Ft(x)). Since An → A strongly by (3.14), this
is a consequence of the resolvent identity:

Rλ −Rµ = (µ− λ)RλRµ,

where Rλ = (λ−A)−1 and Rµ = (µ−A)−1 are the resolvents of A ∈ G(X ,M, β)
for λ > β and µ > β.

Let Ũh(t, s) be the evolution system associated with

A(Ft(x)) + Dg(Ft(x)) + %(x, h),

and Ũ(t, s) be the evolution system associated with

A(Ft(x)) + Dg(Ft(x)).

Then limh→0 Ũh(t, s) = Ũ(t, s), as a result of the Trotter–Kato Theorem. Taking
the limit of

(3.25) ζt(h) = Ũh(t, 0)I +
∫ t

s

Ũh(t, s)g̃(ζs(h)) ds

as h → 0 produces

(3.26) DxFt(x) = Ũ(t, 0)I

+
∫ t

s

Ũ(t, s)A′(Ft(x))DxFs(x)[Ft(x) + DxFs(x)] ds. �

3.6. Main results. With the preceding preparations we are ready to ver-
ify that under the conditions given below, conditions A-I through A-VII from
Section 2 are satisfied.
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Theorem 3.10 (Existence and continuity of solutions with respect to initial
data). Let D and E be two Banach spaces, with D continuously and densely
included in E. Let G(u) = A(u)u + g(u), where g(u) is a nonlinear map from a
neighborhood U of u0 in D into E, A(u) is a closed linear operator from D into
E for each u ∈ U . Assume B-I, B-II, and

B-0 u0 is a fixed point of G(u), g(u0) = 0, Dg(u0) = 0, and Dg is contin-
uous at u0;

B-III there are positive numbers ω and β such that Σ(ω, β) (defined in Sec-
tion 3.2) is contained in the resolvent set of the operator A(u0); more-
over, there exists C > 0 such that

‖[A0 + λI]−1‖ ≤ C[|λ|+ 1]−1

for all λ ∈ Σ(ω, β).

Then there exists a neighborhood U0 of u0 and T0 such that for any u ∈ U0, the
Cauchy problem

dv

dt
= A(t, v)v + g(t, v), v(0) = u ∈ U0.

has a unique solution Ft(u) ∈ D, with lifetime at least T0. Furthermore, Ft(u)
is continuous in t ∈ [0, T0] and u ∈ U0.

Proof. Recall that the spectrum of a bounded operator on a Banach space
is upper semicontinuous (cf. Lemma 2.5). Since A(u) is continuous in u, we
can find a neighborhood U0 of u0 and β′ such that for any u ∈ U0, Σ(ω, β′) is
contained in the resolvent set of the operator A(u), and there exists C ′ > 0 such
that

‖[A(u) + λI]−1‖ ≤ C ′[|λ|+ 1]−1

for all λ ∈ Σ(ω, β′). The assertion now follows from Theorem 3.2 and Proposi-
tion 3.4. �

Thus, the conditions A-I, A-II and A-III from Section 2 are satisfied.

Theorem 3.11 (Existence, norm-continuity in x, and strong continuity in t

of DxFt(x)). Under the same notation and conditions as in Theorem 3.10, the
solution Ft(u) to the Cauchy problem

dv

dt
+ A(t, v)v = g(t, v), v(0) = u ∈ U0,

is differentiable with respect to u with

DuFt(u) = Ũ(t, 0)I +
∫ t

s

Ũ(t, s)A′(Ft(u))DuFs(u)[Ft(u) + DuFs(u)] ds,
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where Ũ(t, s) is the evolution system associated with A(Ft(u))+Dg(Ft(u)). Fur-
thermore,

A-IV DuFt(u) is norm-continuous in u for fixed t ∈ (0, T0] for some T0;
A-V DuFt(u) is strongly continuous in t for fixed u in some neighborhood

of u0.

Proof. By the same argument as in Theorem 3.10, it follows from Theo-
rem 3.9 that there exists a t0 > 0 such that

DuFt(u) = Ũ(t, 0)I +
∫ t

s

Ũ(t, s)A′(Fs(u))DuFs(u)[Fs(u) + DuFs(u)] ds

exists in a neighborhood U0 of u0 for 0 ≤ t ≤ t0. By Proposition 3.4, for fixed
t ∈ [0, t0], DuFt(u) is norm-continuous in u. A-V follows because DuFt(u) is
continuous in t, as a solution to equation (3.13). �

Theorem 3.12. Under the same notation and conditions as in Theorem
3.10, the solution Ft(u) to the Cauchy problem

dv

dt
+ A(t, v)v = g(t, v), v(0) = u ∈ U0,

also has the following properties:

A-VI DFt(u0) is norm-continuous in t for t ∈ (0, T0], i.e.,

lim
t→t0

‖DFt(u0)−DFt0(u0)‖ = 0

for any t0 ∈ (0, T0];
A-VII strong continuity of DuFt(u) in t at t = 0 is uniformly bounded in u

locally at u = u0, that is, given any x ∈ E, there exist Mx > 0, ε > 0,
and a neighborhood Ux of u0 such that

‖DFt(u)x−DF0(u)x‖ ≡ ‖DFt(u)x− x‖ ≤ Mx

for all 0 ≤ t < ε and u ∈ Ux;
A-VIII the spectrum σ(DFt(u0)) lies uniformly inside the unit circle for t ∈

(0, T0].

Proof. Recall that by Theorem 3.9 there exists a t0 > 0 such that

DuFt(u) = Ũ(t, 0)I +
∫ t

0

Ũ(s, 0)A′(Fs(u))DuFs(u)[Fs(u) + DuFs(u)] ds

in a neighborhood U of u0 and Ũ(t, s) is the evolution system associated with
A(Ft(u)) + Dg(Ft(u)). Hence, at u0, Ũ(t, 0) = eA(u0)t with ‖Ũ(t, 0)‖ ≤ e−βt in
view of B-III. Noting that the integrand in the second term is continuous in s,
we see that there exist T0 > 0 and β′ > 0 such that the resolvent set of DuFt(u)



Asymptotic Stability for Equilibria of Nonlinear Semiflows 295

is contained in Σ(ω, β′) for all t ∈ [0, T0] by Lemma 2.5, which is equivalent to
A-VIII. To show that A-VI is satisfied, we note first that at u0,

DuFt(u0) = Ũ(t, 0) +
∫ t

0

Ũ(s, 0)A′(u0)DuFs(u0)[u0 + DuFs(u0)] ds,

and
∂Ũ(t, 0)

∂t
= A(u0)Ũ(t, 0).

Pick an arbitrary unit vector x ∈ Y, and t0 ∈ (0, T0]. Then

(3.27) (DuFt(u0)−DuFt0(u0))x

= (Ũ(t, 0)− Ũ(t0, 0))x +
( ∫ t

t0

Ũ(s, 0)A′(u0)DuFs(u0)[u0 + DuFs(u0)] ds

)
x.

By the basic properties of semigroups, ‖(Ũ(t) − Ũ(t0))x‖ → 0 as t tends to
t0. Note also that the integrand in the second term is bounded in norm and
continuous in s. It is obvious that

lim sup
t→t0

‖(DuFt(u0)−DuFt0(u0))x‖ = 0.

Let t0 = 0 in (3.27). Condition A-VII follows by the same argument. �

Finally, as a consequence of Theorem 2.8 in Section 2 and the preceding
theorems, we have the following result about asymptotic stability and global
existence of solutions to (3.1) in a neighborhood of a fixed point.

Theorem 3.13. Let D and E be two Banach spaces, with D continuously
and densely included in E. Let G(u) = A(u)u + g(u), where g(u) is a nonlinear
map from a neighborhood U of u0 in D into E, and A(u) is a closed linear
operator from D into E for each u ∈ U . Assume

B-0 u0 is a fixed point of G(u), g(u0) = 0, Dg(u0) = 0, and Dg is continuous
at u0;

B-I (A′(u)v)x is Lipschitz continuous in u, i.e.,

‖[(A′(u1)−A′(u2))v]x‖ ≤ C‖u1 − u2‖ · ‖v‖ · ‖x‖D,

where u1, u2 ∈ U ;
B-II for all u1, u2 ∈ U , we have

‖g(u1)− g(u2)‖ ≤ C‖u1 − u2‖;

B-III there are positive ω and β such that Σ(ω, β) is contained in the resolvent
set of the operator A(u0), and there exists C > 0 such that

‖[A0 + λI]−1‖ ≤ C[|λ|+ 1]−1

for all λ ∈ Σ(ω, β).
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Then there exists a neighborhood U of u0 such that G(u) = A(u)u + g(u) gener-
ates a semiflow Ft(u) in U , and we have

I Global existence in U : each u ∈ U has infinite lifetime;
II Asymptotic stability at u0:

lim
t→∞

‖Ft(u)− u0‖ = 0 for all u ∈ U.

Future directions. It is our belief that the present context also allows one
to prove invariant manifold theorems. Some progress in this direction was already
made by, for example, Renardy [1992]. For example, it would be interesting to
be able to apply some of the work on dissipation induced instabilities of Bloch,
Marsden, Krishnaprasad, and Ratiu [1994, 1995] to the present context. This
should also allow one to prove theorems on, for example, the Hopf bifurcation for
quasilinear pde’s of the sort that occur in nonlinear elasticity; see Antman [1996]
and references therein. Remarkably little has been done in this area despite all
of the activity in infinite-dimensional dynamical systems.

Acknowledgments. We thank Stuart Antman, John Ball, and Juan Simo for
helpful comments.
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