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TOPOLOGICAL CONTENT OF THE MAXWELL
THEOREM ON MULTIPOLE REPRESENTATION OF

SPHERICAL FUNCTIONS

V. Arnold

Dedicated to Louis Nirenberg on the occasion of his 70th birthday

A spherical function of degree n on the unit sphere in R3 is the restriction
to the sphere of a homogeneous harmonic polynomial of degree n.

In the present paper the topological consequences of the following classical
fact are discussed.

Theorem 1. The nth derivative of the function 1/r along n constant (tran-
slation-invariant) vector fields in R3 coincides on the sphere with a spherical
function of degree n. Any nonzero spherical function of degree n can be obtained
by this construction from some n-tuple of nonzero vector fields. These n fields
are uniquely defined by the function (up to multiplication by nonzero constants
and permutation of the n fields).

The space of spherical functions of degree n is linear, of dimension 2n + 1.
The set of functions representable by the multipole construction of the the-

orem is a priori highly nonlinear. The theorem implies that the image of the
corresponding polylinear mapping is a linear space. The unicity statement can
be reformulated in purely topological terms.

Theorem 2. The configuration space of n (virtually coinciding) indistin-
guishable points on the real projective plane (i.e. the nth symmetric power
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Symn(RP 2)) is diffeomorphic to the real projective space of dimension 2n:

Symn(RP 2) ≈ RP 2n.

The symmetric powers of nonorientable surfaces have been computed inde-
pendently of Maxwell by J. L. Dupont and G. Lusztig [4].

Remark. Theorem 2 is a relative of the projective Viète’s theorem

Symn(CP 1) ≈ CPn

and is in a sense a quaternionic version of it.
Considering the Riemann sphere CP 1 as a two-fold covering of the real pro-

jective space, we construct as a corollary an algebraic mapping r : CPn → RP 2n

of multiplicity 2n and generalize the classical theorem CP 2/conj ≈ S4 to higher
dimensions.

1. The main spaces and groups

Consider the n-dimensional arithmetical quaternionic space Hn =
⊕

H1
p with

its usual i-complex structure (i(ae + bi + cj + dk) = ai− be + ck − dj). The left
multiplication by j acts on H1

p, preserving complex lines. It sends each line to the
hermitian orthogonal line and acts on CP 1

p = (H1
p \0)/C∗ as an antiholomorphic

involution σp which has no fixed points.
Consider the Coxeter group B(n), acting on the product (CP 1)n as permu-

tations of the factors, virtually accompanied by the σp’s on some of the factors.

Theorem 3. The orbit space of the action of B(n) on (CP 1)n is the 2n-di-
mensional real projective space:

(CP 1)n/B(n) ≈ RP 2n.

The orbit space of the permutation group S(n) is, by Viète’s theorem, the
complex projective space:

(CP 1)n/S(n) = Symn(CP 1) = CPn.

Thus we get the natural mapping % : CPn → RP 2n (which associates with an
orbit ξ of the subgroup S(n) the orbit %(ξ) of the group B(n), containing ξ).

The group B(n) also contains an interesting subgroup Z2 × S(n) (permuta-
tions and permutations accompanied by the antiholomorphic involutions σp in
every factor). The product of the involutions σp acts on (CP 1)n/S(n) as an
involution σ ∈ Z2.

The group inclusions S(n) → Z2 × S(n) → B(n) provide the orbit space
mappings



Topological Maxwell Theorem 207

(CP 1)n/S(n) α−→ (CP 1)n/S(n)× Z2
β−→ (CP 1)n/B(n)

of multiplicities 2 and 2n−1 respectively.
The involution σ : (CP 1)n/S(n) → (CP 1)n/S(n) permutes both preimages

α−1( · ).

Theorem 4. For even n, the involution σ acts on (CP 1)n/S(n) ≈ CPn as
the complex conjugation conj.

Thus for even n we get the real algebraic maps

CPn α−→CPn/conj
β−→RP 2n

of multiplicities 2 and 2n−1 respectively.

Remark. For n = 2 the space in the middle is smooth (see, e.g., [1] and [2];
perhaps this was known even before [2]),

CP 2/conj ≈ S4.

In this case the multiplicity of β is equal to 2.
The involution, interchanging the 2 preimages, acts on S4 as the antipodal

involution.
I am grateful to S. Donaldson for this remark, which shows that the (strange)

Maxwell Theorem is in a sense a higher-dimensional extension of the (equally
strange) theorem CP 2/conj ≈ S4.

As we shall show later in this paper, the Maxwell theorem provides an explicit
formula for the diffeomorphism CP 2/conj → S4.

Remark. In most cases, when stating that two manifolds “coincide” we
shall only provide explicitly a real algebraic homeomorphism between the corre-
sponding manifolds. The pedantical checking that these homeomorphisms can
be smoothened is in some cases left to the reader (see, however, Section 4).

2. Some theorems of real algebraic geometry

Consider a real homogeneous polynomial f of degree n in three variables
(x, y, z). The strange algebraic byproduct of the Maxwell theorem is the following

Theorem 5. Every real homogeneous polynomial f of degree n can be repre-
sented in one and only one way as the sum of two such polynomials, one of which
is the product of n linear real factors, the other being divisible by x2 + y2 + z2.

In particular, every real algebraic curve of degree n in the metric projective
plane defines n real “main axes”, intrinsically associated with it.

Proof. The real equation x2 + y2 + z2 = 0 defines in CP 2 a real curve S

with no real points. It is called the imaginary circle, is rational and is topo-
logically a sphere. The complex conjugation sends S to itself and acts on S as
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an antiholomorphic involution having no fixed points (it is the usual antipodal
involution of S2).

The equation f = 0 defines in CP 2 a real algebraic curve K of degree n. The
complex conjugation conj : CP 2 → CP 2 sends K to itself and permutes the 2n

points of the intersection of K with S.
Each pair of conjugate intersection points defines a line connecting them

(the points are different, since conj has no fixed points on S2). This line is
real (since conj permutes two points on it) and may be defined by an equation
ax + by + cz = 0 with real coefficients.

Consider the product g of the n real linear functions that we have constructed.
We shall prove that f is proportional to g along S.

The homogeneous polynomial f vanishes at the 2n common points of the
curves K and S. The curve S is rational. Choose a rational parameter t (say,
x = 2t, y = t2− 1, z = i(t2 +1)). By the choice of coordinates we may eliminate
the case where t = ∞ is one of the intersection points of S and K. Now the
polynomials f(x(t), y(t), z(t)) and g(x(t), y(t), z(t)) of degree 2n have 2n common
roots, and g 6= 0. Hence along S we have everywhere f = cg, c = const.

The homogeneous polynomial f − cg is thus vanishing on S. Hence it is of
the form (x2 + y2 + z2)h(x, y, z), where h is a real homogeneous polynomial of
degree n− 2. The theorem is proved.

Remark. The unicity of the decomposition f = cg + (x2 + y2 + z2)h can be
proved independently of the existence. Suppose we have a second decomposition
involving c′g′ and h′. Then cg − c′g′ = (x2 + y2 + z2)h′′, where g and g′ are
the products of n linear factors. Suppose g = 0 on a line l. On this line the
product polynomial c′g′ has n real roots, and it is equal to the right hand side
product which has at most n− 2 real roots. Thus c′g′ ≡ 0, h′′ = 0 on l. Hence
we can divide all the three terms by the equation of l and thus prove the unicity
by induction on n. (For n = 1 everything is evident, since h′′ = 0 and hence
cg = c′g′.)

Consider the projective space RPN of real algebraic curves of degree n (N =
n(n + 3)/2).

The real algebraic curves consisting of n real lines form in this projective
space a real algebraic closed variety T of dimension 2n (the image of (RP 2)n

under a polylinear mapping). The curves containing S form a projective subspace
P = RPM , M = (n − 2)(n + 1)/2. In these terms our Theorem 5 takes the
following form.

Theorem 6. The varieties T and P are linked in RPN with coefficient 1
in such a way that through every point of RPN which belongs neither to T nor
to P , there passes a unique real projective line connecting T to P . This line
intersects T (as well as P ) in one point.
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Now it is easy to prove Theorem 2.

Proof of Theorem 2. Consider a plane H of dimension M +1, containing
the M -dimensional projective space P . Every such plane intersects T . Indeed,
choose a point O on H which belongs neither to P nor to T . The line connecting
O to T and to P belongs to H, and intersects T .

The intersection point is unique. Otherwise we would find on H a point O

and two lines connecting T to P and passing through O.
Thus we have constructed a homeomorphism between T ≈ Symn(RP 2) and

the manifold of planes H of dimension M + 1 containing P . The last manifold
is RPN−M−1, and since N −M − 1 = 2n, Theorem 2 is proved (at least at the
topological level).

3. From algebraic geometry to spherical functions

The derivatives of a harmonic function along translation-invariant vector
fields are evidently harmonic functions. Hence all the multiple derivatives of 1/r

are harmonic outside 0. The following lemmas are also well known.

Lemma 1. The nth derivative of 1/r along n translation-invariant fields has
the form P/r2n+1, where P is a homogeneous polynomial of degree n.

Proof. Let A be a homogeneous polynomial of degree a. Then

∂

∂x

A

rb
=

r2(∂A/∂x)− bAx

rb+2
.

The numerator is a homogeneous polynomial of degree a+1. Thus differentiation
increases its degree by 1 and that of the denominator by 2, as required.

Lemma 2. The homogeneous polynomial P of Lemma 1 is a harmonic func-
tion.

Proof. This follows from the classical inversion theorem, which I briefly
recall here. The harmonic function P/r2n+1 is homogeneous, of degree −(n+1).
On the unit sphere it coincides with P . This implies that the continuation of
this function from the unit sphere to the whole space as a homogeneous function
of degree n is also harmonic. The continuation is just P .

To prove the inversion theorem denote by ∆̃ the Laplace operator div grad
on the unit sphere. We extend it to the homogeneous functions of degree k in
Rm \ 0 in such a way that every homogeneous function F of degree k is sent to
a homogeneous function ∆̃F of the same degree.

An easy computation (based on scaling of divergence and gradient only) leads
to the spherical Laplacian formula

∆̃F = r2∆F − ΛF, Λ = k2 + k(m− 2).
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This formula shows that:

(i) The restriction of a harmonic homogeneous function of degree k to the
unit sphere in Rm is an eigenfunction of the spherical Laplacian with
eigenvalue −Λ.

(ii) An eigenfunction of the spherical Laplacian with eigenvalue −Λ becomes
a harmonic function when continued from the sphere to Rm \ 0 as a
homogeneous function of degree k.

(iii) For every degree of homogeneity k in Rm there exists a dual degree
k′ = 2 − m − k such that a homogeneous harmonic function of degree
k remains harmonic if we restrict it to the sphere and then continue it
as a homogeneous function of the dual degree. For m = 3 we get the
duality condition k + k′ = −1.

In particular, P/r2n+1 of Lemma 1 has degree k = −(1 + n), m = 3, hence
the dual degree is k′ = n, and Lemma 2 follows.

Lemma 3. Every spherical function of degree n on S2 can be represented in
the form f(X, Y, Z)(1/r), where f is a homogeneous polynomial of degree n, and
where X = ∂/∂x, Y = ∂/∂y, Z = ∂/∂z, r2 = x2 + y2 + z2.

Proof. The space of harmonic homogeneous polynomials of degree n is
linear. It contains the subspace of harmonic polynomials whose restrictions are
representable as in Lemma 3 (by Lemmas 1 and 2). This subspace is (evidently)
rotation invariant. But the representation of SO(3) in the space of spherical
functions of degree n is irreducible (everything can be obtained from the Legendre
polynomial of degree n by rotations and taking linear combinations of the rotated
functions).

Thus the subspace of Lemma 3 coincides with the whole space of spherical
functions of degree n.

Lemma 4. Every spherical function of degree n can be represented in the
form fT (X, Y, Z)(1/r), where fT =

∏n
i=1(αiX + βiY + γiZ) is the product of n

real linear factors.

Proof. By Theorem 5 there exists a decomposition f(x, y, z) = fT (x, y, z)+
g(x, y, z)(x2 + y2 + z2). Applying this to the representation of Lemma 3 we get

f(X, Y, Z)(1/r) = fT (X, Y, Z)(1/r) + 0,

since X2 + Y 2 + Z2 = ∆ and ∆(1/r) = 0. Thus every spherical function has a
multipole representation of Theorem 1.

Lemma 5. The multipole representation is unique (i.e. the polynomial fT is
unambiguously defined by the spherical function).
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Proof. Let fT and f ′T be two completely decomposable polynomials, and
let

fT (X, Y, Z)(1/r) = f ′T (X, Y, Z)(1/r).

According to Lemma 1 (used n times),

fT (X, Y, Z)(1/r) = (cfT (x, y, z) + r2g)r−(2n+1), c 6= 0,

f ′T (X, Y, Z)(1/r) = (c′f ′T (x, y, z) + r2g′)r−(2n+1), c′ 6= 0.

Hence fT (x, y, z)− f ′T (x, y, z) = r2h(x, y, z). But this is only possible if fT = f ′T
(Theorem 5). Theorem 1 is thus proved.

4. Explicit formulas

The quaternionic left multiplication by j sends the vector (z, w) = zj +we of
C2 ≈ H1 to (w,−z). This vector is hermitian-orthogonal to the original vector.

We thus get the explicit formula t 7→ −1/t for the antiholomorphic involution
of CP 1 which has no fixed points.

We can use the pairs of hermitian-orthogonal lines in C2 to parametrize the
points of RP 2. We thus deduce Theorem 3 from Theorem 2. We shall now write
explicit formulas for the diffeomorphism

Symn(RP 2) ≈ RP 2n

of Theorem 2, using as coordinates on Symn(RP 2) n-tuples of pairs of hermitian-
orthogonal lines in C2.

Consider first the case n = 1.
With every pair of hermitian-orthogonal vectors in C2, (z, w) and (w,−z),

we associate a quadratic form on the dual plane, which is the product of the
linear forms represented by the vectors:

f = (zx + wy)(wx− zy) = f0x
2 + f1xy + f2y

2.

Here (x, y) are the coordinates on the dual plane C2. Thus the coefficients of
the quadratic form f are

f0 = zw, f1 = ww − zz, f2 = −zw.

Note that f1 is real, while f2 = −f0. We shall consider f0 and f1 as coordinates
in the space R3 of forms f .

The multiplication of the initial vector (z, w) by a complex number multiplies
the resulting vector by the squared absolute value of this number. Hence we get
a mapping

F : CP 1 → S2 = (R3 \ 0)/R+,

sending complex lines in C2 to real rays in R3.
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Chosen a point (z, w) on the complex line, (f0, f1) sends it to a definite point
on the ray. For instance, choosing z = t, w = 1 we get f0 = t, f1 = 1− tt.

If the initial point on the line is normalized by the condition |z|2 + |w|2 = 1,
the image lies on the ellipsoid |2f0|2 + |f1|2 = 1 (which we may also call a sphere,
considering 2f0 and f1 as coordinates).

Hence the Riemann sphere CP 1 = S3/S1 is sent by (2f0, f1) diffeomor-
phically onto the unit sphere in R3 with coordinates 2f0 and f1. Considering
t = z/w as the coordinate in CP 1, we obtain a mapping from the t-plane to the
unit sphere in R3, which is just the stereographical projection. The formulas
that we shall write below are in this sense higher-dimensional generalizations of
the stereographical projection.

Replacing the initial line in CP 2 by the hermitian-orthogonal line one changes
the sign of F . Indeed, replacing z by w and w by −z one changes the signs of
both f0 and f1. Thus F transforms the involution j : CP 1 → CP 1 (sending
each line to its hermitian orthocomplement) into the antipodal involution of S2

in R3.
Now we shall apply a similar construction to the nth symmetric power of

RP 2. Start from the nth symmetric power of CP 1. A point of this complex
manifold

Symn(CP 1) ≈ CPn

is defined as an (unordered) set of n lines in C2.
Choose n nonzero vectors (zk, wk) and multiply the corresponding linear

forms on the dual plane to obtain the binary n-form

H(x, y) =
n∏

k=1

(zkx + wky) = h0x
n + . . . + hnyn.

The coefficients of this form are the (homogeneous) coordinates in CPn =
Symn(CP 1) (defining its smooth holomorphic structure).

If wk 6= 0, we may choose wk = 1. In this case we get as affine coordinates
the basic symmetric functions of {zk},

h0 = σn(z), . . . , hn−1 = σ1(z) (hn = 1).

Now we shall use the same σk as local coordinates on Symn(RP 2).
We start from n pairs of hermitian-orthogonal lines in C2. We choose a

representative of each pair in such a way that no line chosen coincides with a
nonchosen one (at a given point and hence at some neighbourhood of it, where
our local coordinate system will work). It suffices to choose always the same
line whenever a pair is repeated several times to fulfill the above nondegeneracy
condition.
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Let (zk, 1) be the vectors defining the chosen lines (k = 1, . . . , n). We shall
use as local coordinates on the real variety Symn(RP 2) the (real and imaginary
parts of the) n complex numbers

σ1(z1, . . . , zn), . . . , σn(z1, . . . , zn).

The orthogonal lines are defined by the vectors (1,−zk). We construct the
symmetrizing 2n-form

f =
n∏

k=1

(zkx + y)
n∏

k=1

(x− zky) = f0x
2n + . . . + f2ny2n.

We shall see that the coefficients fk are polynomials in σ and σ.

Theorem 7. The mapping F : Cn → R2n+1 sending (σ1, . . . , σ2n) to
(f0, . . . , fn) defines a (local) diffeomorphism of the manifold Symn(RP 2) to the
space RP 2n of rays in R2n+1. In coordinates the mapping F is given by the
following explicit formulas:

f0 = σn,

f1 = σn−1 − σnσ1,

f2 = σn−2 − σn−1σ1 + σn−2σ2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fn = 1− σ1σ1 + σ2σ2 − . . . + (−1)nσnσn.

Proof. Evidently, we find
n∏

k=1

(zkx + y) = σnxn + σn−1x
n−1y + . . . + yn,

n∏
k=1

(x− zky) = xn − σ1x
n−1y + σ2x

n−2y2 + . . . + (−1)nσnyn.

Multiplying these two polynomials, we obtain (following F. Aicardi) the above
formulas for the coefficients of the product.

We also get f2n−k = (−1)n−kfk, in particular, the middle coefficient fn is
real.

It remains to prove that the Jacobian nowhere vanishes in our domain. This
can be seen with no computations. The Jacobian that we need is of order 2n+1.
One of the columns is the vector Φ whose components are

(f0, f0, f1, f1, . . . , fn−1, fn−1, fn).

The other 2n columns are its derivatives

(∂Φ/∂σ1, ∂Φ/∂σ1, . . . , ∂Φ/∂σn, ∂Φ/∂σn).
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We represent this nonholomorphic Jacobian as the value at the point τ = σ of a
holomorphic Jacobian T (σ, τ), defined by the following construction.

Consider the product
n∏

k=1

(zkx + y)
n∏

k=1

(x− wky) = F0x
n + . . . + F2ny2n.

The coefficients Fk are some polynomials in σ1(z), . . . , σn(z) and τ1 = σ1(w), . . . ,
τn = σn(w). Denote by Ψ = (F0, . . . , F2n) the vector-function depending on σ

and τ , and construct the determinant with the columns

(Ψ, ∂Ψ/∂σ1, ∂Ψ/∂τ1, . . . , ∂Ψ/∂σn, ∂Ψ/∂τn).

This determinant T (σ, τ) does not vanish at the point σ(z), τ = σ(z). Indeed,
our noncoincidence condition implies that no zk coincides with −1/zl. Hence,
(σ1, . . . , σn) and (τ1, . . . , τn) form a local holomorphic coordinate system in
CP 2n = Sym2n(CP 1) at our point σ, τ = σ and in its neighbourhood. Thus, this
large determinant T (σ, τ) does not vanish at our point. But the determinant we
need to evaluate coincides with the value of T (σ, σ), since f2n−k = (−1)n−kfk.
We have thus proved that our mapping Symn(RP 2) → RP 2n is a local diffeo-
morphism.

We already know from Section 2 that it is a homeomorphism. Theorem 2 is
now proved completely.

5. Maxwell theorem and CP 2/conj = S4

The explicit formulas of Section 4 provide also a diffeomorphism to S2n of
the following orbit space.

Start from the complex manifold (CP 1)n of ordered sets of n lines in C2.
Consider the following smooth (nonholomorphic) action of the Coxeter group
D(n) on this manifold. An element of D(n) is a permutation of the factors
accompanied by the replacement of an even number of lines by their hermitian
orthocomplements.

Theorem 8. (CP 1)n/D(n) ≈ S2n, and the diffeomorphism is locally defined
by the formulas of Theorem 7.

Proof. The permutations do not change the binary 2n-form f . The replace-
ment of a line by the complementary line changes the sign of the corresponding
factor (zkx+y)(x−zky). Hence an even number of replacements does not change
f (while an odd number of replacements changes f to −f).

The relation (CP 1)n/D(n) ≈ S2n that we have thus proved seems interesting
as an informal extension of the Chevalley theorem: the orbit space of the action
of a real 2n− 1-dimensional group in C2n (which should be thus considered as a
generalization of a Coxeter group) is the smooth real space R2n+1.
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Example. For n = 2 we get

(CP 1)2/D(2) ≈ S4,

where D(2) is the group of 4 elements, acting on the couples of lines in C2,
permuting them and (virtually) replacing both lines by their hermitian comple-
ments.

But (CP 1)2/S(2) ≈ Sym2(CP 1) = CP 2. Hence (CP 1)2/D(2) = CP 2/(j),
where (j) is the replacement of both lines by their complements.

Consider the complex manifold Symn(CP 1) = CPn of unordered sets of
n lines in C2. The operation j of replacement of each line by its hermitian
orthocomplementary line acts on CPn as an (antiholomorphic) involution.

Theorem 9. For even n, the involution j : CPn → CPn coincides with the
complex conjugation (in some coordinates).

Proof. The natural (homogeneous) coordinates in CPn = Symn(CP 1) are
the coefficients of the form

Hz,w(x, y) =
n∏

k=1

(zkx + wky) =
n∑

k=0

hkxn−kyk.

We now compute the action of j on the coefficients hk.
We transport the action of j to the dual plane:

wkx− zky = zk(−y) + wk(x).

Hence the transformed form is

Hw,−z(x, y) = Hz,w(−y, x).

In terms of the coefficients we get the following expression for the transformed
form:

n∑
k=0

hk(−y)n−k(x)k =
n∑

k=0

(−1)n−khkxkyn−k.

Hence j acts on the coefficients of H as (jh)k = (−1)khn−k. Since n is even, we
also find (jh)n−k = (−1)khk. Now the required coordinates are hk + hn−k and
i(hk − hn−k) for even k, (hk + hn−k) and hk − hn−k for odd k (we never take
hn/2 − hn/2, of course).

Finally, for n = 2, our results reduce to an explicit formula for the classical
diffeomorphism CP 2/conj ≈ S4. The “Maxwell theorem”

(CP 1)n/D(n) ≈ S2n

extends this diffeomorphism to higher dimensions.
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6. The history of the Maxwell theorem

Maxwell’s own version can be found in his main book Electricity and Mag-
netism, vol. I, chapter IX, n. 129–133 (pages 222–233 in [5]).

Sylvester criticized his reasoning, saying in [7]: “I am a little surprised that
this distinguished writer should not have noticed that there is always one, and
only one, real system of poles appertaining to any given harmonic...

With all possible respect for Professor Maxwell’s great ability, I must own
that to deduce purely analytical properties of spherical harmonics, as he has
done, from “Green’s theorem” and the “principle of potential energy”... seems
to me a proceeding at variance with sound method, and of the same kind and as
reasonable as if one should... make the rule for the extraction of the square root
flow as a consequence from Archimedes’ law of floating bodies.”

Sylvester proposed his own approach, perhaps equivalent to that of Theo-
rem 5 above:

“The method of poles for representing spherico-harmonics, devised or devel-
oped by Professor Maxwell, really amounts to neither more nor less than the
choice of an apt canonical form for a ternary quantic, subject to the condition
that the sum of the squares of its variables (here differential operators) is zero.”

However, he had not taken the trouble to work out the subject in detail
(“being very much pressed for time and within twenty-four hours of steaming
back to Baltimore”). The details appeared in [6], and later in [3].

Sylvester mentioned the relation of his theory of integrals of products of
spherical harmonics to the Ivory theorem on the ellipsoid attraction and proposed
several generalizations of these ideas.

It seems that both the algebraic and the philosophical ideas of that Note of
Sylvester were never understood or developed by the mathematical community.
The pages containing the note were not cut in the copy of his Collected Papers
in the library of the Paris Ecole Normale Supérieure.

The note contains the following (anti-bourbakist) paragraph:
“It is by no means uncommon in mathematical investigation... for the part

to be in a sense greater than the whole—the groundwork of this wonder-striking
intellectual phenomenon being that, for mathematical purposes, all quantities
and relations ought to be considered (so experience teaches) as in a state of
flux.”

This general philosophy leads him to the conclusion that “... the general
proposition should be more easily demonstrable than any special case of it”.

We can deduce from the way Sylvester arrived at this conclusion that the
truth of this very important principle of Sylvester (borrowed almost hundred
years later by Bourbaki) does not imply the necessity of the disastrous petrifi-
cation of the “flux” of mathematics.
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