MULTIPLE POSITIVE SOLUTIONS OF A SCALAR FIELD EQUATION IN \mathbb{R}^{n}

Roberta Musina

Dedicated to Louis Nirenberg on the occasion of his 70th birthday

Much interest has been paid in recent years to the Kazdan-Warner problem:

$$
\left\{\begin{array}{l}
-\Delta u+\lambda u=k(x) u^{2^{*}-1}, \quad u>0, \quad \text { in } \mathbb{R}^{n} \tag{0}\\
u \rightarrow 0 \quad \text { at } \infty
\end{array}\right.
$$

(see for example [3], [8], [9], [14], [17]-[19], [24] and the references therein). Here, $\lambda \in \mathbb{R}$ is a positive parameter, k is a given smooth function on $\mathbb{R}^{n}, n \geq 3$, and $2^{*}=2 n /(n-2)$ is the critical Sobolev exponent. Problem (0) has a geometrical relevance, since for $\lambda=0$ every solution to (0) gives rise, up to a stereographic projection, to a metric g on the sphere whose scalar curvature is proportional to $k(x)$. From the point of view of the Calculus of Variations the interest in the Kazdan-Warner problem is due to the role of the noncompact group of dilations in \mathbb{R}^{n}. This produces quite a large spectrum of phenomena, like concentrations of maps, lack of compactness, failure of the Palais-Smale condition and nonexistence results.

In the spirit of the paper by Coron [11] (see also [2]) one may ask if the coefficient $k(x)$ affects the topology of the energy sublevels. In this paper we give an answer to this question in the subcritical case. Namely, we study the

[^0]"perturbed" problem
\[

\left\{$$
\begin{array}{l}
-\Delta u+\lambda u=k(x) u^{p-1}, \quad u>0, \quad \text { in } \mathbb{R}^{n} \tag{1}\\
u \in H^{1}\left(\mathbb{R}^{n}\right)
\end{array}
$$\right.
\]

where $p<2^{*}$ is close to the critical exponent 2^{*}. Our aim is to use some variational arguments which are due to Benci and Cerami [5] (see also [6]) in order to relate the topology of the sublevels of the energy functional to the topology of the superlevels $\left\{z \in \mathbb{R}^{n} \mid k(z) \geq t\right\}$ for $t>0$. Our assumptions on the map k are the following:
$\left(\mathrm{k}_{1}\right) k: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous;
$\left(\mathrm{k}_{2}\right)$ the limit $k_{\infty}=\lim _{|z| \rightarrow \infty} k(z)$ exists;
$\left(\mathrm{k}_{3}\right)$ there exists $z_{0} \in \mathbb{R}^{n}$ such that $k\left(z_{0}\right)>k_{\infty}^{+}=\max \left\{k_{\infty}, 0\right\}$.
Notice that under these assumptions the map k is bounded, and the set

$$
M=\left\{z \in \mathbb{R}^{n} \mid k(z)=\max _{z \in \mathbb{R}^{n}} k(z)\right\}
$$

is compact. Writing $M_{\delta}=\left\{x \in \mathbb{R}^{n} \mid d(x, M) \leq \delta\right\}$ for $\delta>0$, and denoting by $\operatorname{cat}_{M_{\delta}}(M)$ the Lusternik-Schnirelman category of the set M in M_{δ}, we compare the category of some energy sublevels with $\operatorname{cat}_{M_{\delta}}(M)$. Notice that $\operatorname{cat}_{M_{\delta}}(M)=$ $\operatorname{cat}(M)$ for M regular and δ small (see Section 1). The first result we obtain is the following.

Theorem A. Assume that k satisfies $\left(\mathrm{k}_{1}\right)$, $\left(\mathrm{k}_{2}\right)$ and $\left(\mathrm{k}_{3}\right)$. Then for every $\delta>0$ there exists a $p_{\delta}<2^{*}$ such that for $p \in\left[p_{\delta}, 2^{*}[\right.$ problem (1) has at least $\operatorname{cat}_{M_{\delta}}(M)$ (weak) solutions.

We point that the solutions in Theorem A are close to the ground state solution. Moreover, they concentrate as $p \rightarrow 2^{*}$, and then they disappear. The further solution of the next theorem has higher energy and it appears when M has a rich topology. It would be of interest to investigate whether this solution survives as $p \rightarrow 2^{*}$.

Theorem B. Assume that k satisfies $\left(\mathrm{k}_{1}\right)$, $\left(\mathrm{k}_{2}\right)$ and
$\left(\mathrm{k}_{3}^{*}\right)$ there exists a $\left.t \in\right] k_{\infty}^{+}, \max _{\mathbb{R}^{n}} k[$ such that M is contractible in the set $\left\{z \in \mathbb{R}^{n} \mid k(z) \geq t\right\}$.
If $\operatorname{cat}_{M_{\delta}}(M)>1$ for some $\delta>0$, then for p close to 2^{*}, problem (1) has at least $\operatorname{cat}_{M_{\delta}}(M)+1$ solutions.

We illustrate Theorem B with a simple example, in which we use some remarks of Section 1.

Example. Assume that the map k satisfies $\left(\mathrm{k}_{1}\right)$ and $\left(\mathrm{k}_{2}\right)$. Assume also that $M \subseteq B_{R}$, and $\min _{B_{R}} k>k_{\infty}^{+}$for some $R>0$. If k has $s>1$ maximum points, then problem (1) has at least $s+1$ solutions.

The blow-up analysis of Section 3 gives more information in the radially symmetric case. In Section 5 we prove as an example the following theorem.

Theorem C. Assume that $k=k(r)$ is a radially symmetric map satisfying $\left(\mathrm{k}_{1}\right)$, $\left(\mathrm{k}_{2}\right)$ and $\left(\mathrm{k}_{3}\right)$. Assume also that $\max _{r \geq 0} k(r)$ is achieved at $s \geq 1$ points, and that 0 is not a maximum point. Then for every p close to 2^{*} problem (1) has at least $2 s$ non-radially symmetric solutions.

The method we adopt can also be applied to study problem (1) where λ is a varying parameter and $p<2^{*}$ is fixed. Thus, when λ is large enough we get theorems analogous to Theorems A, B and C. There are many papers that treat equations like (1) on \mathbb{R}^{n}, in the subcritical case. We quote for example the papers [1], [4], [7], [12], [13], [16], [20], [22], [23], [25], [26]. An extensive bibliography on this subject is contained in [12].

Notation. For every real function g we set $g^{+}=\max \{g, 0\}$ and $g^{-}=$ $\min \{g, 0\}$. We recall that $g^{+}, g^{-} \in H^{1}$ if $g \in H^{1}$, and $\nabla g^{ \pm}=\nabla g$ a.e. on $\{x \mid \pm g \geq 0\}$.

1. The Lusternik-Schnirelman category. Examples

Let M be a closed subset of a topological space X. We recall that the Lusternik-Schnirelman category $\operatorname{cat}_{X}(M)$ of the set M in X is the least integer σ such that M can be covered by σ closed subsets $A_{1}, \ldots, A_{\sigma}$ of M such that for all i, A_{i} is contractible in X. This means that for every index i, there exists a continuous homotopy $H_{i}:[0,1] \times A_{i} \rightarrow X$ joining the inclusion $A_{i} \rightarrow X$ to a constant map. If no such integer exists, then by definition $\operatorname{cat}_{X}(M)=\infty$. If $M=X$ we write $\operatorname{cat}_{M}(M)=\operatorname{cat}(M)$.

We notice that $\operatorname{cat}(M) \geq \operatorname{cat}_{X}(M)$, and equality holds if there exists a continuous retraction $r: X \rightarrow M$ such that $r(x)=x$ on M. In Theorem A we are interested in the case when M is a compact subset of \mathbb{R}^{n}, and $X=M_{\delta}$ for some δ positive, where M_{δ} is the set of points whose distance from M is not greater than δ. Now we exhibit some examples in which $\operatorname{cat}_{M_{\delta}}(M)$ is a good approximation for $\operatorname{cat}(M)$ for small δ. We omit the simple proofs.

Example 1.2. In the following examples we have $\operatorname{cat}_{M_{\delta}}(M)=\operatorname{cat}(M)$ for δ small.
(i) M is the closure of a bounded open set having smooth boundary.
(ii) M is a smooth and compact submanifold of \mathbb{R}^{n}.
(iii) M is finite set. Then $\operatorname{cat}_{M_{\delta}}(M)=\operatorname{cat}(M)=$ cardinality of M.

In the next example $\operatorname{cat}_{M_{\delta}}(M)$ approaches $\operatorname{cat}(M)$, even if the sets M_{δ} do not retract on M.

Example 1.3. Let $x_{k} \rightarrow x_{0}$ be a convergent sequence in \mathbb{R}^{n} such that $x_{k} \neq x$ for infinitely many indices k. Set $M=\left\{x_{k} \mid k \geq 1\right\} \cup\{x\}$. Then $\operatorname{cat}_{M_{\delta}}(M)<\infty$ for all δ, and $\lim _{\delta \rightarrow 0} \operatorname{cat}_{M_{\delta}}(M)=\infty$.

2. The variational approach

Our first hypotheses on the map k are the following:

$$
\begin{equation*}
k \in C^{0} \cap L^{\infty}\left(\mathbb{R}^{n}\right) \text { and } k \text { is positive at some point } z \in \mathbb{R}^{n} . \tag{2.1}
\end{equation*}
$$

We notice that it is not restrictive to assume

$$
\begin{equation*}
\sup _{\mathbb{R}^{n}} k=1 \tag{2.2}
\end{equation*}
$$

For $p \in] 2,2^{*}[$ and for $\lambda>0$ we set

$$
\begin{gathered}
\Sigma=\left\{u \in H^{1}\left(\mathbb{R}^{n}\right) \mid \int_{\mathbb{R}^{n}}\left(|\nabla u|^{2}+\lambda|u|^{2}\right)=1 \text { and } \int_{\mathbb{R}^{n}} k(x)\left|u^{+}\right|^{p}>0\right\} \\
J_{p}(u)=\left(\int_{\mathbb{R}^{n}} k(x)\left|u^{+}\right|^{p} d x\right)^{-2 /(p-2)}, \quad J_{p}: \Sigma \rightarrow \mathbb{R}
\end{gathered}
$$

Notice that σ is a nonempty smooth submanifold of the Sobolev space $H^{1}\left(\mathbb{R}^{n}\right)$, and that the functional J_{p} is smooth on Σ. Moreover, it is positive on Σ by (2.2) and the Sobolev embedding theorem. Now we prove that every critical point for J_{p} on Σ is, up to a Lagrange multiplier, a weak solution to problem (1). First we compute

$$
\left(\left.\nabla J\right|_{\Sigma}\right)(u)=\frac{2 p}{p-2} J_{p}(u)\left(u-J_{p}(u)^{(p-2) / 2}(-\Delta+\lambda)^{-1}\left(k\left(u^{+}\right)^{p-1}\right)\right)
$$

Therefore, a critical point for J_{p} on Σ is a weak solution to

$$
-\Delta u+\lambda u=J_{p}(u)^{(p-2) / 2} k(x)\left(u^{+}\right)^{p-1} \quad \text { in } \mathbb{R}^{n}
$$

Multiplying this equation by u^{-}we readily get $\int\left(\left|\nabla u^{-}\right|^{2}+\lambda\left|u^{-}\right|^{2}\right)=0$, hence $u \geq 0$ a.e. and $u=u^{+}$. Thus, u is a weak solution to $-\Delta u+c(x) u=$ $J_{p}(u)^{(p-2) / 2} k(x)^{+} u^{p-1}$ for some coefficient $c(x)>0$, which is locally bounded by the elliptic regularity theory. Therefore, standard maximum principles give $u>0$ in \mathbb{R}^{n}, and hence u solves (1). Now we define

$$
m_{p}(k)=\inf _{u \in \Sigma} J_{p}(u)=\inf _{u \in \Sigma}\left(\int_{\mathbb{R}^{n}} k(x)\left|u^{+}\right|^{p} d x\right)^{-2 /(p-2)}
$$

The first step is compare the infimum $m_{p}(k)$ with the best Sobolev constant S :

$$
\begin{equation*}
S=\inf _{U \in D^{1}\left(\mathbb{R}^{n}\right)} \frac{\int|\nabla U|^{2}}{\left[\int|U|^{2^{*}}\right]^{2 / 2^{*}}}, \tag{2.3}
\end{equation*}
$$

where $D^{1}\left(\mathbb{R}^{n}\right)$ is the completion of $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with respect to the norm $\left(\int_{\mathbb{R}^{n}}|\nabla U|^{2}\right)^{1 / 2}$.

Lemma 2.1. Assume that k satisfies (2.1) and (2.2). Then

$$
m_{p}(k) \rightarrow S^{n / 2} \quad \text { as } p \rightarrow 2^{*}
$$

Proof. Fix any u in Σ. Since $k \leq 1$ on \mathbb{R}^{n}, by the Hölder inequality we first get

$$
\begin{aligned}
\left(\int k(x)\left|u^{+}\right|^{p}\right)^{\left(2^{*}-2\right) /(p-2)} & \leq\left(\int\left|u^{+}\right|^{2}\right)^{\left(2^{*}-p\right) /(p-2)} \int\left|u^{+}\right|^{2^{*}} \\
& \leq \lambda^{\delta(p)} \int\left|u^{+}\right|^{2^{*}}
\end{aligned}
$$

where $\delta(p)$ is an exponent such that $\delta(p) \rightarrow 0$ as $p \rightarrow 2^{*}$. From the definition of the best Sobolev constant S and from $\int\left|\nabla u^{+}\right|^{2} \leq 1$ we infer that

$$
S \leq \inf _{u \in \Sigma} \frac{\int\left|\nabla u^{+}\right|^{2}}{\left(\int\left|u^{+}\right|^{2^{*}}\right)^{2 / 2^{*}}} \leq \lambda^{2 \delta(p) / 2^{*}} m_{p}(k)^{2 / n}
$$

This proves that $S^{n / 2} \leq \liminf _{p \rightarrow 2^{*}} m_{p}(k)$. Conversely, let $\varepsilon>0$, and fix a map $\varphi \in H^{1} \cap C^{0}\left(\mathbb{R}^{n}\right)$ having compact support, and such that $\varphi \geq 0, \int|\nabla \varphi|^{2}=1$, and $\left(\int|\varphi|^{2^{*}}\right)^{-2 / 2^{*}} \leq S+\varepsilon$. Fix a point $z \in \mathbb{R}^{n}$ with $k(z)>0$. For every positive μ we set $\varphi_{\mu}=\mu^{-n / 2^{*}} \varphi((x-z) / \mu)$. For μ small enough it results that $\int k(x)|\varphi|^{p}>0$. Testing $m_{p}(k)$ with the map φ_{μ}, we see that for μ small,

$$
\begin{aligned}
m_{p}(k) \leq & \mu^{(n-2) p /(p-2)}\left(\int|\nabla \varphi|^{2}+\lambda \mu^{2} \int|\varphi|^{2}\right)^{p /(p-2)} \\
& \times\left(\int k(x)\left|\varphi\left(\frac{x-z}{\mu}\right)\right|^{p} d x\right)^{-2 /(p-2)} \\
\leq & \mu^{-(n-2)\left(2^{*}-p\right) /(p-2)}(1+\varepsilon)^{p /(p-2)}\left(\int k(\mu x+z)|\varphi(x)|^{p} d x\right)^{-2 /(p-2)}
\end{aligned}
$$

Passing to the limit as $p \rightarrow 2^{*}$ and then as $\mu \rightarrow 0$ we get
$\limsup _{p \rightarrow 2^{*}} m_{p}(k) \leq(1+\varepsilon)^{n / 2}\left(k(z) \int|\varphi|^{2^{*}}\right)^{-n / 2^{*}} \leq(1+\varepsilon)^{n / 2} k(z)^{-n / 2^{*}}(S+\varepsilon)^{n / 2}$.
Letting ε go to zero we get $\lim \sup _{p \rightarrow 2^{*}} m_{p}(k) \leq k(z)^{-n / 2^{*}} S^{n / 2}$, and the conclusion readily follows, by taking the infimum over all $z \in \mathbb{R}^{n}$.

The next results are based on the concentration-compactness lemma by P. L. Lions. From now on we agree that $1 / 0=+\infty$. We remark that assumptions $\left(\mathrm{k}_{1}\right),\left(\mathrm{k}_{2}\right)$ and (2.2) imply

$$
m_{p}(1) \leq m_{p}(k) \leq\left(k_{\infty}^{+}\right)^{-2 /(p-2)} m_{p}(1)
$$

The left hand side inequality is trivial, from $k \leq 1$. The proof of the last inequality can be found in [20], I.2, and it is based on a translation argument. In the paper by P. L. Lions the significance of the strict inequality

$$
\begin{equation*}
m_{p}(k)<\left(k_{\infty}^{+}\right)^{-2 /(p-2)} m_{p}(1) \tag{2.4}
\end{equation*}
$$

is also underlined. Inequality (2.4) holds true for example if $k_{\infty} \leq 0$, or if k is nonconstant and $k(z) \geq k_{\infty}^{+}$for all $z \in \mathbb{R}^{n}$. In Section 3 (see Corollary 3.6) we shall prove that (2.4) holds if k satisfies the weaker assumption $\left(\mathrm{k}_{3}\right)$, provided p is sufficiently close to 2^{*}. The next result is meaningful only if (2.4) is satisfied.

Lemma 2.2. Let $p<2^{*}$ and assume that k satisfies the assumptions $\left(\mathrm{k}_{1}\right)$, $\left(\mathrm{k}_{2}\right)$ and (2.2). Then the functional J_{p} satisfies the Palais-Smale condition on the set

$$
\left\{u \in \Sigma \mid J_{p}(u)<\left(k_{\infty}^{+}\right)^{-2 /(p-2)} m_{p}(1)\right\} .
$$

Proof. The proof is essentially contained in [20], Section I.2. Nevertheless we present it here in order to make the paper self-contained. Let $\left(u_{h}\right)_{h}$ be a sequence in Σ such that

$$
\begin{gather*}
\left(\left.\nabla J\right|_{\Sigma}\right)\left(u_{h}\right) \rightarrow 0 \tag{2.5}\\
J_{p}\left(u_{h}\right) \rightarrow c<\left(k_{\infty}^{+}\right)^{-2 /(p-2)} m_{p}(1) \tag{2.6}
\end{gather*}
$$

as $h \rightarrow \infty$. First, notice that $c>0$. We apply the concentration-compactness lemma [20] to the sequence of measures $\varrho_{h}=\left|\nabla u_{h}\right|^{2}+\lambda\left|u_{h}\right|^{2}$. Standard arguments show that vanishing and dichotomy cannot occur. Thus, the sequence $\left(\varrho_{h}\right)_{h}$ is tight, that is, there exist a subsequence $\left(\varrho_{h}\right)_{h}$ and a sequence of points $\left(z_{h}\right)_{h}$ in \mathbb{R}^{n} such that

$$
\begin{equation*}
\forall \varepsilon>0 \exists R>0: \quad \int_{B\left(z_{h}, R\right)}\left(\left|\nabla u_{h}\right|^{2}+\lambda\left|u_{h}\right|^{2}\right) \geq 1-\varepsilon . \tag{2.7}
\end{equation*}
$$

Now we prove that the sequence $\left(z_{h}\right)_{h}$ is bounded. Suppose by contradiction that $\left|z_{h}\right| \rightarrow \infty$, and set $\widehat{u}_{h}=u_{h}\left(\cdot+z_{h}\right)$. Since $\widehat{u}_{h} \in \Sigma$, we can assume that $\widehat{u}_{h} \rightarrow V$ weakly in H^{1} for some function V satisfying $\int\left(|\nabla V|^{2}+\lambda|V|^{2}\right) \leq 1$ by semicontinuity. From (2.7) and from the Rellich theorem we get $\widehat{u}_{h} \rightarrow V$ in L^{p} and hence also $\widehat{u}_{h}^{+} \rightarrow V^{+}$in L^{p}. Thus, from the assumptions on k and from $\left|z_{h}\right| \rightarrow \infty$ we infer $\int k(x)\left|u_{h}^{+}\right|^{p} \rightarrow k_{\infty} \int\left|V^{+}\right|^{p}$. This implies first that $k_{\infty}>0$, since $c>0$. Moreover, it proves that $\int\left|V^{+}\right|^{p}=k_{\infty}^{-1} c^{-(p-2) / 2}>0$. Therefore, testing $m_{p}(1)$ with the map V we get

$$
m_{p}(1) \leq\left(\int\left|V^{+}\right|^{p}\right)^{-2 /(p-2)}=k_{\infty}^{-2 /(p-2)} c<m_{p}(1)
$$

a contradiction. This proves that the sequence $\left(z_{h}\right)_{h}$ is bounded. But then we can take $z_{h}=0$ for all h in (2.6), that is, we have proved that

$$
\forall \varepsilon>0 \exists R>0: \quad \int_{B(0, R)}\left(\left|\nabla u_{h}\right|^{2}+\lambda\left|u_{h}\right|^{2}\right) \geq 1-\varepsilon
$$

Arguing as before, we find that there exists $u \in \Sigma$ such that (for a subsequence) $u_{h} \rightarrow u$ weakly in H^{1} and strongly in L^{p}. In particular, from (2.6) it follows that $c=J_{p}(u)$, and from (2.5) it follows that u is a weak solution to

$$
\begin{equation*}
-\Delta u+\lambda u=c^{(p-2) / 2} k(x)\left(u^{+}\right)^{p-1} \tag{2.8}
\end{equation*}
$$

Using u as test function in (2.8) we get $\int\left(|\nabla u|^{2}+\lambda|u|^{2}\right)=1$. Since $u_{h} \rightarrow u$ weakly in H^{1}, and since $\int\left(\left|\nabla u_{h}\right|^{2}+\lambda\left|u_{h}\right|^{2}\right)=1$ for every h, this is sufficient to conclude that $u_{h} \rightarrow u$ strongly in H^{1}.

3. The concentration behaviour

Let U be a positive and radially symmetric function which minimizes the $L^{2^{*}}$ norm on the sphere $\left\{\left.u \in D^{1}\left(\mathbb{R}^{n}\right)\left|\int\right| \nabla u\right|^{2}=1\right\}$ (see [21]). We also recall that U is positive and smooth, and it is strictly decreasing as a function of the radius. For $\mu>0$ and $z \in \mathbb{R}^{n}$ we set

$$
U_{\mu, z}(x)=\mu^{-n / 2^{*}} U\left(\frac{x-z}{\mu}\right) \quad \text { and } \quad U_{\mu}(x)=U_{\mu, 0}(x)=\mu^{-n / 2^{*}} U(x / \mu)
$$

A simple computation shows that for every μ,

$$
\begin{gathered}
\int\left|\nabla U_{\mu, z}\right|^{2}=1, \quad \int\left|U_{\mu, z}\right|^{2^{*}}=S^{-2^{*} / 2} \\
\left|\nabla U_{\mu, z}\right|^{2} \rightarrow \delta_{z}, \quad\left|U_{\mu, z}\right|^{2^{*}} \rightarrow S^{-2^{*} / 2} \delta_{z} \quad \text { as } \mu \rightarrow 0
\end{gathered}
$$

weakly in the sense of measures, where $\delta_{z}=$ Dirac mass at $z \in \mathbb{R}^{n}$.
In the following, a_{p} will denote any function of $\left.p \in\right] 2,2^{*}[$ such that we have $a_{p}-m_{p}(k) \rightarrow 0^{+}$as $p \rightarrow 2^{*}$. In particular, $a_{p} \rightarrow S^{n / 2}$ by Lemma 2.1.

Proposition 3.1. Assume that k satisfies the assumptions $\left(\mathrm{k}_{1}\right)$, $\left(\mathrm{k}_{2}\right)$ and (2.2). Then, for every sequence $u_{p} \in \Sigma$ with $J_{p}\left(u_{p}\right) \leq a_{p}$, we have $u_{p} \rightarrow 0$ in $L^{2}\left(\mathbb{R}^{n}\right)$ and $u_{p}-u_{p}^{+} \rightarrow 0$ in $H^{1}\left(\mathbb{R}^{n}\right)$. Moreover, there exist a subsequence $p_{h} \rightarrow 2^{*}$, a sequence $\left(z_{h}\right)_{h}$ of points with $k\left(z_{h}\right) \rightarrow 1$, and a sequence $\left(\mu_{h}\right)_{h}$ of positive numbers with $\mu_{h} \rightarrow 0$, such that

$$
\begin{array}{ll}
\left|u_{p_{h}}^{+}\right|^{p_{h}}-\left|U_{\mu_{h}, z_{h}}\right|^{2^{*}} \rightarrow 0 & \text { in } L^{1}\left(\mathbb{R}^{n}\right), \\
\nabla\left(u_{p_{h}}-U_{\mu_{h}, z_{h}}\right) \rightarrow 0 & \text { in } L^{2}\left(\mathbb{R}^{n}\right)^{n}, \\
u_{p_{h}}-U_{\mu_{h}, z_{h}} \rightarrow 0 & \text { in } L^{2^{*}}\left(\mathbb{R}^{n}\right) \text { as } h \rightarrow \infty
\end{array}
$$

Proof. Let u_{p} be as in the statement. The proof will be divided into several steps.

Step 1: $u_{p} \rightarrow 0$ in $L^{2}, u_{p}-u_{p}^{+} \rightarrow 0$ in H^{1}. Compactness up to translations and dilations. Using the arguments in the proof of Lemma 2.1 and the Sobolev theorem we get the following chain of inequalities:

$$
\begin{aligned}
\left(\int k(x)\left|u_{p}^{+}\right|^{p}\right)^{\left(2^{*}-2\right) /(p-2)} & \leq\left(\int\left|u_{p}^{+}\right|^{p}\right)^{\left(2^{*}-2\right) /(p-2)} \\
& \leq\left(\int\left|u_{p}^{+}\right|^{2}\right)^{\left(2^{*}-p\right) /(p-2)} \int\left|u_{p}^{+}\right|^{2^{*}} \\
& \leq \lambda^{-\delta(p)} \int\left|u_{p}^{+}\right|^{2^{*}} \leq \lambda^{-\delta(p)} S^{-2^{*} / 2}\left(\int\left|\nabla u_{p}^{+}\right|^{2}\right)^{2^{*} / 2} \\
& \leq \lambda^{-\delta(p)}\left(\int|\nabla u|^{2}\right)^{2^{*} / 2} S^{-2^{*} / 2} \leq \lambda^{-\delta(p)} S^{-2^{*} / 2}
\end{aligned}
$$

where $\delta(p) \rightarrow 0$ as $p \rightarrow 2^{*}$. Therefore, Lemma 2.1 and $J_{p}\left(u_{p}\right) \leq a_{p}$ give

$$
\begin{equation*}
S^{-2^{*} / 2}=\lim _{p \rightarrow 2^{*}} \int k(x)\left|u_{p}\right|^{p}=\lim _{p \rightarrow 2^{*}} \int\left|u_{p}\right|^{p}=\lim _{p \rightarrow 2^{*}} \int\left|u_{p}\right|^{2^{*}}, \tag{3.1}
\end{equation*}
$$

and also

$$
\lim _{p \rightarrow 2^{*}} \int\left|\nabla u_{p}\right|^{2}=\lim _{p \rightarrow 2^{*}} \int\left|\nabla u_{p}^{+}\right|^{2}=1
$$

First we observe that this last equality implies $u_{p} \rightarrow 0$ in L^{2} and also $u_{p}^{+} \rightarrow 0$ in L^{2}, since $u_{p} \in \Sigma$ for every p. We also infer that $u_{p}-u_{p}^{+} \rightarrow 0$ in H^{1}. Hence, from now on we can assume, without restriction, that $u_{p}=u_{p}^{+}$. From (3.1) we see that u_{p} approaches the best Sobolev constant S. An application of a result by P. L. Lions [21], Theorem I. 1 and Corollary I.1, proves that the sequence u_{p} is relatively compact in D^{1} up to translations and changes of scale. This means that for a sequence $p_{h} \rightarrow 2^{*}$, there exist sequences $\left(\mu_{h}\right)_{h}$ of positive numbers, and $\left(z_{h}\right)_{h}$ of points, such that the rescaled sequence $\widehat{u}_{h}(x)=\mu_{h}^{n / 2^{*}} u_{p_{h}}\left(\mu_{h} x+z_{h}\right)$ satisfies: $\nabla \widehat{u}_{h} \rightarrow \nabla U$ in $L^{2}, \widehat{u}_{h} \rightarrow U$ in $L^{2^{*}}$ and almost everywhere. In particular, we also get $\nabla\left(u_{p_{h}}-U_{\mu_{h}, z_{h}}\right) \rightarrow 0$ in L^{2} and $u_{p_{h}}-U_{\mu_{h}, z_{h}} \rightarrow 0$ in $L^{2^{*}}$.

Step 2: $\mu_{h} \rightarrow 0$. Notice that $\lim _{h} \int_{B(0,1)}\left|\widehat{u}_{h}\right|^{2}=\int_{B(0,1)} U^{2}>0$ by the Rellich theorem. Therefore, Step 2 follows from

$$
o(1)=\int_{\mathbb{R}^{n}}\left|u_{p_{h}}\right|^{2} \geq \int_{B\left(z_{h}, \mu_{h}\right)}\left|u_{p_{h}}\right|^{2}=\mu_{h}^{2} \int_{B(0,1)}\left|\widehat{u}_{h}\right|^{2}
$$

STEP 3: $\eta_{h}:=\left(\mu_{h}\right)^{n\left(1-p_{h} / 2^{*}\right)} \rightarrow 1$. Set $f_{h}=\eta_{h}\left|\widehat{u}_{h}\right|^{p_{h}}$. Notice that $f_{h} \geq 0$ and $\int f_{h}=\int\left|u_{p}\right|^{p} \rightarrow S^{-2^{*} / 2}$ by (3.1). Then by Fatou's lemma we infer that (for a subsequence) the pointwise limit of f_{h} is a.e. finite. Therefore, $\eta_{h} \rightarrow \eta<\infty$ and $f_{h} \rightarrow \eta U^{2^{*}}$ a.e. Now consider the sequence $g_{h}=\eta_{h}\left|\widehat{u}_{h}\right|^{p_{h}}-\left|\widehat{u}_{h}\right|^{2^{*}}$. We have
$g_{h} \in L^{1}, g_{h} \rightarrow(\eta-1) U^{2^{*}}$ a.e., and $\int g_{h} \rightarrow 0$ by (3.1). But this immediately gives $\eta=1$, and Step 3 is concluded.

STEP 4: $\left|\widehat{u}_{h}\right|^{p_{h}} \rightarrow U^{2^{*}}$ in L^{1}. This easily follows from the Lebesgue and Fatou theorems, since $\left|\widehat{u}_{h}\right|^{p_{h}}, U^{2^{*}} \in L^{1},\left|\widehat{u}_{h}\right|^{p_{h}} \rightarrow U^{2^{*}}$ almost everywhere, and $\int\left|\widehat{u}_{h}\right|^{p_{h}} \rightarrow \int U^{2^{*}}$ by (3.1) and Step 3. Notice that Steps 3 and 4 imply in particular that $\left|u_{p_{h}}\right|^{p_{h}}-\left|U_{\mu_{h}, z_{h}}\right|^{2^{*}} \rightarrow 0$ in L^{1}.

STEP 5: completion of the proof. Using the first equality in (3.1) and Step 3 we get

$$
\begin{equation*}
S^{-2^{*} / 2}=\int k\left(\mu_{h} x+z_{h}\right)\left|\widehat{u}_{h}(x)\right|^{p_{h}} d x+o(1) \tag{3.2}
\end{equation*}
$$

First we assume that the sequence z_{h} is bounded. In this case, we can pass to a subsequence to have $z_{h} \rightarrow z$ for some point z. Thus the continuity of k, Step 2, Step 4 and (3.2) lead to $S^{-2^{*} / 2}=k(z) S^{-2^{*} / 2}$, and hence $k(z)=1$. In case $\left|z_{h}\right| \rightarrow \infty$, one has only to replace $k(z)$ by k_{∞} and to repeat the same argument.

Remark 3.2. Suppose that, in addition, k satisfies $\left(\mathrm{k}_{3}\right)$. Then the set M is compact, and therefore there exists a point $z \in M$ such that $z_{h} \rightarrow z$ as $h \rightarrow \infty$.

Proposition 3.1 can be improved in the radially symmetric case, as is shown in the next result. In that case, the present blow-up analysis has some corollaries which will be stated in Section 5. In particular, it turns out that in the radially symmetric case the maps u_{p} cannot "concentrate at infinity", essentially because they are uniformly bounded in $L^{2}\left(\mathbb{R}^{n}\right)$.

Proposition 3.3. Let k and u_{p} be as in Proposition 3.1. Suppose that for every p, the map u_{p} is radially symmetric. Then the conclusion of Proposition 3.1 holds with $z_{h}=0$ for every h.

Proof. By Proposition 3.1, the sequence $\widehat{u}_{h}(x)=\mu_{h}^{n / 2^{*}} u_{p_{h}}\left(\mu_{h} x+z_{h}\right)$ converges in $D^{1}\left(\mathbb{R}^{n}\right)$ to the map U, for some sequences $\mu_{h} \rightarrow 0,\left(z_{h}\right)_{h}$ in \mathbb{R}^{n}. We just have to prove that $z_{h} / \mu_{h} \rightarrow 0$ as $h \rightarrow \infty$, since in this case the sequence $\widehat{u}_{h}(x)$ can be replaced with $\widehat{u}_{h}(x)=\mu_{h}^{n / 2^{*}} u_{p_{h}}\left(\mu_{h} x\right)=\widehat{u}_{h}\left(x-z_{h} / \mu_{h}\right)$. Assume by contradiction that for some subsequence we have $\left|z_{h}\right| / \mu_{h} \geq 2 \delta>0$. Since $u_{p_{h}}-U_{\mu_{h}, z_{h}} \rightarrow 0$ in $L^{2^{*}}\left(\mathbb{R}^{n}\right)$, and since $u_{p_{h}}$ is radially symmetric, we get

$$
\begin{aligned}
\int_{B(0, \delta)} U^{2^{*}} & =\int_{B\left(z_{h}, \delta \mu_{h}\right)}\left|u_{p_{h}}\right|^{2^{*}}+o(1)=\int_{B\left(-z_{h}, \delta \mu_{h}\right)}\left|u_{p_{h}}\right|^{2^{*}}+o(1) \\
& =\int_{B\left(-2 z_{h} / \mu_{h}, \delta\right)} U^{2^{*}}+o(1)
\end{aligned}
$$

This immediately leads to a contradiction, since $U=U(|x|)$ is smooth and strictly decreasing, and therefore from $\left|-2 z_{h} / \mu_{h}\right| \geq 4 \delta$ it follows that $\min _{|x| \leq \delta} U^{2^{*}}>\max _{|x| \geq 2 \delta} U^{2^{*}}$.

Now, let $p \in] 2,2^{*}$, and consider the minimization problem

$$
\begin{equation*}
m_{p}(1)=\inf _{V \in \Sigma}\left(\int|V|^{p}\right)^{-2 /(p-2)} \tag{3.3}
\end{equation*}
$$

It is well known that (3.3) has a positive solution (see for example [20]), which is unique up to translations by a result of Kwong [15]. We denote by V_{p} the radially symmetric solution of (3.3). An application of Proposition 3.3 with $k \equiv 1$ gives the next result.

Corollary 3.4. As $p \rightarrow 2^{*}$, we have
(i) $V_{p} \rightarrow 0$ in $L^{2}\left(\mathbb{R}^{n}\right)$;
(ii) $\left|\nabla V_{p}\right|^{2} \rightarrow \delta_{0}$ weakly in the sense of measures;
(iii) $\left|V_{p}\right|^{p} \rightarrow S^{-2^{*} / 2} \delta_{0}$ weakly in the sense of measures.

As in the paper by Benci and Cerami [5], we define two continuous maps $\beta: \Sigma \rightarrow \mathbb{R}^{n}$ and $\Phi_{p}: \mathbb{R}^{n} \rightarrow \Sigma$. For $p<2^{*}$ we set

$$
\Phi_{p}(z):=V_{p}(\cdot-z) \quad \text { for } z \in \mathbb{R}^{n}
$$

Let $R>0$ be large enough, so that in particular M is contained in the ball $B_{R}=\{x| | x \mid \leq R\}$. Fix a smooth and bounded map $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that φ has compact support, and $\varphi(x)=x$ if $|x| \leq R$. We define a "barycentre" function

$$
\beta(u)=\int_{\mathbb{R}^{n}} \varphi(x)\left(|\nabla u|^{2}+\lambda u^{2}\right) d x \quad \text { for } u \in \Sigma
$$

We also set

$$
J_{p}^{a_{p}}=\left\{u \in \Sigma \mid J_{p}(u) \leq a_{p}\right\} .
$$

Corollary 3.5. Assume that k satisfies $\left(\mathrm{k}_{1}\right)$, $\left(\mathrm{k}_{2}\right)$, $\left(\mathrm{k}_{3}\right)$ and (2.2). Then, as $p \rightarrow 2^{*}$,
(i) $\beta\left(\Phi_{p}(z)\right)=z+o(1)$ uniformly for $z \in B_{R}$;
(ii) $\Phi_{p}(z) \in \Sigma$ and $J_{p}\left(\Phi_{p}(z)\right)=m_{p}(k)+o(1)$ uniformly for $z \in M$;
(iii) $\sup \left\{d(\beta(u), M) \mid u \in J_{p}^{a_{p}}\right\} \rightarrow 0$.

Proof. Assertions (i) and (ii) are easy consequences of Corollary 3.4 (use also the fact that M is compact). Now we prove (iii). For a sequence $p \rightarrow 2^{*}$, let $u_{p} \in J_{p}^{a_{p}}$. Then, by Proposition 3.1 and Remark 3.2, we find that for a subsequence p_{h}, and for sequences $\mu_{h} \rightarrow 0$ and $z_{h} \rightarrow z$ with $z \in M$, we have $u_{p_{h}} \rightarrow 0$ in L^{2} and $\nabla\left(u_{p_{h}}-U_{\mu_{h}, z_{h}}\right) \rightarrow 0$ in L^{2}. Then by the continuity of β we get $\beta\left(u_{p_{h}}\right)=\int \varphi(x)\left|\nabla U_{\mu_{h}, z_{h}}\right|+o(1)=z$, since $\left|\nabla U_{\mu, z}\right|^{2} \rightarrow \delta_{z}$ uniformly for z on bounded sets, and since $\varphi(z)=z$ on M.

Corollary 3.6. Assume that k satisfies $\left(\mathrm{k}_{1}\right)$, $\left(\mathrm{k}_{2}\right)$, $\left(\mathrm{k}_{3}\right)$ and (2.2). Then for every $\left.t \in] k_{\infty}^{+}, 1\right]$ there exists $p_{t}<2^{*}$ such that for $p \in\left[p_{t}, 2^{*}[\right.$ we have
(i) $\Phi_{p}(z) \in \Sigma$ if $k(z) \geq t$;
(ii) $\max \left\{J_{p}\left(\Phi_{p}(z)\right) \mid z \in \mathbb{R}^{n}, k(z) \geq t\right\}<\left(k_{\infty}^{+}\right)^{-2 /(p-2)} m_{p}(1)$.

In particular, $m_{p}(k)<\left(k_{\infty}^{+}\right)^{-2 /(p-2)} m_{p}(1)$ for every p close to 2^{*}.
Proof. (i) follows from Corollary 3.4(iii), since the set $\left\{z \in \mathbb{R}^{n} \mid k(z) \geq t\right\}$ is compact. To prove (ii) it is sufficient to assume $k_{\infty}>0$. Fix a $\left.\left.t \in\right] k_{\infty}, 1\right]$, and write $t=\vartheta k_{\infty}$ for $\vartheta>1$. Using Corollary 3.4(iii) and Lemma 2.1, we deduce that for p close to 2^{*},

$$
J_{p}\left(\Phi_{p}(z)\right)^{-(p-2) / 2}=k(z) S^{-2^{*} / 2}+o(1) \geq \vartheta k_{\infty} m_{p}(1)^{-2^{*} / n}+o(1)
$$

uniformly on $\left\{z \in \mathbb{R}^{n} \mid k(z) \geq t\right\}$. Thus,

$$
\begin{aligned}
k_{\infty}^{2 /(p-2)} m_{p}(1)^{-1} \max _{k(z) \geq t} J_{p}\left(\Phi_{p}(z)\right) & \leq \vartheta^{-2 /(p-2)} m_{p}(1)^{\left(2^{*}-2\right) /(p-2)}+o(1) \\
& =\vartheta^{-2 /(p-2)}+o(1)
\end{aligned}
$$

and the conclusion follows.

4. Proofs

We follow the method developed by Benci and Cerami in [5].
Proof of Theorem A. The map k satisfies $\left(\mathrm{k}_{1}\right),\left(\mathrm{k}_{2}\right),\left(\mathrm{k}_{3}\right)$ and the nonrestrictive condition (2.2). Assume that the functional J_{p} has a finite number of critical points, and fix a $\delta>0$. For every p sufficiently close to 2^{*}, we fix a number $a_{p}<\left(k_{\infty}^{+}\right)^{-2 /(p-2)} m_{p}(1)$ such that a_{p} is not a critical value for J_{p}, and such that

$$
\begin{gather*}
\Phi_{p}(z) \in \Sigma \quad \text { and } \quad J_{p}\left(\Phi_{p}(z)\right)<a_{p} \quad \forall z \in M \tag{4.1}\\
a_{p}-m_{p}(k) \rightarrow 0 \quad \text { as } p \rightarrow 2^{*} \tag{4.2}
\end{gather*}
$$

(use Corollary 3.5(ii) and Corollary 3.6). Next, fix a radius R such that $M \subseteq B_{R}$. Define the maps β and Φ_{p} as in Section 3. By Corollary 3.5(i), (iii) for p close to 2^{*} (p will depend on δ),

$$
\begin{gather*}
\left|\beta\left(\Phi_{p}(z)\right)-z\right|<\delta \quad \forall z \in B_{R} \tag{4.3}\\
\beta\left(J_{p}^{a_{p}}\right) \subseteq M_{\delta} . \tag{4.4}
\end{gather*}
$$

We claim that
(4.5) \quad the composite map $\beta \circ \Phi_{p}$ is homotopic to the inclusion $M \rightarrow M_{\delta}$.

In fact, it suffices to consider the homotopy $\alpha(t, x)=x+t\left(\beta\left(\Phi_{p}(x)\right)-x\right)$, since by (4.1) and (4.3) we have $d(\alpha(t, x), M) \leq\left|\beta\left(\Phi_{p}(x)\right)-x\right| \leq \delta$ for every $x \in M$ and $t \in M$ and $t \in[0,1]$, that is, α maps $[0,1] \times M$ into M_{δ}.

Notice that by Lemma 2.2 the functional J_{p} satisfies the Palais-Smale condition in $J_{p}^{-1}\left(\left[m_{p}(k), a_{p}\right]\right)$. Hence, by standard Lusternik-Schnirelman theory, to conclude the proof it suffices to show that

$$
\begin{equation*}
\operatorname{cat}\left(J_{p}^{a_{p}}\right) \geq \operatorname{cat}_{M_{\delta}}(M) . \tag{4.6}
\end{equation*}
$$

In the following, we denote by Φ_{p} the restriction of the map Φ_{p} to M. Hence, $\Phi_{p}: M \rightarrow J_{p}^{a_{p}}$ by (4.1). Suppose that $A_{1}, \ldots, A_{\sigma}$ is a closed covering of $J_{p}^{a_{p}}$ such that for every i, there exists a homotopy $H_{i}:[0,1] \times A_{i} \rightarrow J_{p}^{a_{p}}$ with $H_{i}(0, u)=u$ for $u \in A_{i}$ and $H_{i}(1, \cdot)=$ constant for $i=1, \ldots, \sigma$. Set $C_{i}=\Phi_{p}^{-1}\left(A_{i}\right)$. Then C_{i} is closed in M for all i, and the union of the sets C_{i} covers M. In order to prove (4.6) it suffices to show that the sets C_{i} are contractible in M_{δ}. This is readily done by using the homotopy $h_{i}(t, x)=\beta\left(H_{i}\left(t, \Phi_{p}(x)\right)\right), h_{i}:[0,1] \times C_{i} \rightarrow M_{\delta}$ (use (4.4) and (4.5)). This completes the proof of Theorem A.

Proof of Theorem B. The map k satisfies $\left(\mathrm{k}_{1}\right)$, $\left(\mathrm{k}_{2}\right),\left(\mathrm{k}_{3}^{*}\right)$ and the nonrestrictive condition (2.2). Assume again that the functional J_{p} has a finite number of critical points, and fix $\delta>0$ such that $\operatorname{cat}_{M_{\delta}}(M)>1$. Take p close to 2^{*}, and define a_{p} as before. Fix the value $\left.t \in\right] k_{\infty}, \max _{\mathbb{R}^{n}} k[$ such that M is contractible in $C:=\left\{z \in \mathbb{R}^{n} \mid k(z) \geq t\right\}$ (assumption $\left(\mathrm{k}_{3}^{*}\right)$). Fix a radius R such that $C \subseteq B_{R}$, and define the maps β and Φ_{p} as in Section 3. For p close to 2^{*} we get the validity of (4.3) and (4.4), and moreover $\Phi_{p}(C) \subseteq \Sigma$ by Corollary 3.6. In addition, if p is close to 2^{*}, then we can choose $b_{p}>a_{p}$ such that b_{p} is not a critical level for J_{p}, and such that

$$
\begin{align*}
& b_{p}>\max _{x \in C} J_{p}\left(\Phi_{p}(x)\right), \tag{4.7}\\
& b_{p}<k_{\infty}^{-2 /(p-2)} m_{p}(1) \tag{4.8}
\end{align*}
$$

Notice that this is possible if p is large enough, by Corollary 3.6(ii). Notice also that by Lemma 2.2 and (4.8) the functional J_{p} satisfies the Palais-Smale condition on $J_{p}^{b_{p}}$. Assume that J_{p} has no critical points with energy in $\left[a_{p}, b_{p}\right]$. In this case we can use a deformation lemma and (4.1) to construct a map $\alpha: J_{p}^{b_{p}} \rightarrow J_{p}^{a_{p}}$ such that $\alpha\left(\Phi_{p}(z)\right)=\Phi_{p}(z)$ for $z \in M$ (notice that $\Phi_{p}(M)$ is a compact subset of $\Sigma)$. Let $h:[0,1] \times M \rightarrow C$ be a continuous homotopy joining the inclusion $M \rightarrow C$ to a constant map, and then define the map

$$
H(s, x)=\beta\left(\alpha\left(\Phi_{p}(h(s, x))\right)\right), \quad H:[0,1] \times M \rightarrow M_{\delta}
$$

(use (4.7) and (4.4)), which is a homotopy between $\beta \circ \Phi_{p}$ and a constant map. Since, as before, the map $\beta \circ \Phi_{p}$ is homotopic to the inclusion $M \rightarrow M_{\delta}$, this proves that M is contractible in M_{δ}, contrary to the assumption $\operatorname{cat}_{M_{\delta}}(M)>1$.

5. The radially symmetric case

We conclude this paper with some remarks in case k is a radially symmetric function satisfying $\left(\mathrm{k}_{1}\right),\left(\mathrm{k}_{2}\right)$ and the nonrestrictive condition $\max k=1$. Set

$$
\Sigma^{\mathrm{s}}=\{u \in \Sigma \mid u \text { is radially symmetric }\}, \quad m_{p}^{s}(k)=\inf _{u \in \Sigma^{s}} J_{p}(u)
$$

so that $m_{p}^{\mathrm{s}}(k) \geq m_{p}(k)>0$. Since k is radially symmetric, it turns out that every critical point of the functional J_{p} on Σ^{s} is, up to a Lagrange multiplier, a solution to (1). We recall that by a result of Strauss [26] (see also [10] and [7]), for every $p \in\left[2,2^{*}\left[\right.\right.$ the restriction of the embedding $H^{1}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)$ to the subspace of radially symmetric functions is compact. Therefore, standard arguments show that the infimum $m_{p}^{\mathrm{s}}(k)$ is achieved on Σ^{s}, and hence problem (1) has always a radially symmetric solution (see also [26]). The aim of this section is to give some estimates for $m_{p}^{\mathrm{s}}(k)$ as $p \rightarrow 2^{*}$, in order to prove the existence of non-radially symmetric solutions.

Lemma 5.1.

$$
S^{n / 2} \leq \liminf _{p \rightarrow 2^{*}} m_{p}^{\mathrm{s}}(k) \leq \limsup _{p \rightarrow 2^{*}} m_{p}^{\mathrm{s}}(k) \leq\left(k(0)^{+}\right)^{-n / 2^{*}} S^{n / 2}
$$

Proof. The left-hand side inequality follows from $m_{p}^{\mathrm{s}}(k) \geq m_{p}(k)$ and from Lemma 2.1. Assume $k(0)>0$, fix an $\varepsilon>0$, and choose a nonnegative and radially symmetric function $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\int|\nabla \varphi|^{2}=1$ and $\left(\int|\varphi|^{2^{*}}\right)^{-2 / 2^{*}} \leq S+\varepsilon$. Arguing as in the second part of the proof of Lemma 2.1 we see that for every $\mu>0$ small enough,

$$
m_{p}^{\mathrm{s}}(k) \leq \mu^{-(n-2)\left(2^{*}-p\right) /(p-2)}(1+\varepsilon)^{p /(p-2)}\left(\int k(\mu x)|\varphi(x)|^{p} d x\right)^{-2 /(p-2)}
$$

Passing to the limit as $p \rightarrow 2^{*}$ and then as $\mu \rightarrow 0$ we get
$\limsup _{p \rightarrow 2^{*}} m_{p}^{\mathrm{s}}(k) \leq(1+\varepsilon)^{n / 2}\left(k(0) \int|\varphi|^{2^{*}}\right)^{-n / 2} \leq(1+\varepsilon)^{n / 2} k(0)^{-n / 2^{*}}(S+\varepsilon)^{n / 2}$.
Letting ε go to zero we get $\lim \sup _{p \rightarrow 2^{*}} m_{p}^{\mathrm{s}}(k) \leq k(0)^{-n / 2^{*}} S^{n / 2}$, and the conclusion follows.

Proposition 5.2. $\liminf _{p \rightarrow 2^{*}} m_{p}^{\mathrm{s}}(k)>S^{n / 2}$ if and only if $k(0)<1$.
Proof. If $k(0)=1$ then by Lemma 5.1, $m_{p}^{\mathrm{s}}(k) \rightarrow S^{n / 2}$. Conversely, if it is possible to find a sequence $\left(u_{p}\right)_{p}$ in Σ^{s} such that $J_{p}\left(u_{p}\right)-m_{p}(k) \rightarrow 0$ as $p \rightarrow 2^{*}$, then by Proposition 3.1 a subsequence $u_{p_{h}}$ concentrates along a sequence of points z_{h}, with $k\left(z_{h}\right) \rightarrow 1$. On the other hand, u_{p} is radially symmetric for every p, and hence by Proposition 3.3 we can take $z_{h}=0$ for all h, which implies in particular $k(0)=1$.

Corollary 5.3. Assume that k satisfies also $\left(\mathrm{k}_{3}\right)$ and $k(0)<1$. Then, for p close to 2^{*}, the least energy solution to (1) is not radially symmetric.

Proof. By Lemma 2.2 and Corollary 3.6 the infimum $m_{p}(k)$ is achieved on Σ. Since $m_{p}(k) \rightarrow S^{n / 2}$ as $p \rightarrow 2^{*}$, for p close to 2^{*} we have $m_{p}(k)<m_{p}^{\mathrm{s}}(k)$, and the conclusion follows.

Proof of Theorem C. Let k be as in Theorem C, and assume also that $\max k=1$. Under these assumptions, the set M is the union of s spheres, and hence $\operatorname{cat}_{M_{\delta}}(M) \geq 2 s$ for δ small (see Section 2). Theorem C follows from the proof of Theorem A. We just have to notice that $a_{p}<m_{p}^{\mathrm{s}}(k)$ for p close to 2^{*}, since $a_{p} \rightarrow S^{n / 2}<\liminf _{p \rightarrow 2^{*}} m_{p}^{\mathrm{s}}(k)$ by Lemma 2.1 and Proposition 5.2.

It would be of interest to give more information on the behaviour of $m_{p}^{\mathrm{s}}(k)$ as $p \rightarrow 2^{*}$. Since a deeper analysis of this subject goes far beyond the aim of the present paper, we do not enter into details.

References

[1] S. Alama and Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Differential Equations 96 (1992), 88-115.
[2] A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294.
[3] , The scalar-curvature problem on standard three-dimensional sphere, J. Funct. Anal. 95 (1991), 106-172.
[4] A. Bahri and Y. Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equations in \mathbb{R}^{n}, Rev. Mat. Iberoamericana 6 (1990), 1-15.
[5] V. Benci and G. Cerami, The effect of the domain topology on the number of positive solutions, Arch. Rational Mech. Anal. 114 (1991), 79-93.
[6] V. Benci, G. Cerami and D. Passaseo, On the number of the positive solutions of some nonlinear elliptic problems, Nonlinear Analysis. A Tribute in Honour of Giovanni Prodi (A. Ambrosetti and A. Marino, eds.), Quaderni Scoula Norm. Sup., Pisa, 1991, pp. 94-107.
[7] H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), 313-345.
[8] G. Bianchi and H. Egnell, An ODE approach to the equation $\Delta u+K u^{\frac{n+2}{n-2}}=0$, in \mathbb{R}^{n}, Math. Z. 210 (1992), 137-166.
[9] , A variational approach to the equation $\Delta u+K u^{\frac{n+2}{n-2}}=0$ in \mathbb{R}^{n}, Arch. Rational Mech. Anal. 122 (1993), 159-182.
[10] S. Coleman, V. Glazer and A. Martin, Action minima among solutions to a class of Euclidean scalar field equations, Comm. Math. Phys. 58 (1978), 211-221.
[11] J. M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 209-212.
[12] V. Coti Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on \mathbb{R}^{n}, Comm. Pure Appl. Math. 45 (1992), 1217-1269.
[13] W. Y. Ding and W. M. Ni, On the existence of a positive entire solution of a semilinear elliptic equation, Arch. Rational Mech. Anal. 91 (1986), 283-308.
[14] J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597.
[15] M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^{p}=0$, Arch. Rational Mech. Anal. 105 (1989), 243-266.
[16] Y. Li, Remarks on a semilinear elliptic equation on \mathbb{R}^{n}, J. Differential Equations 74 (1988), 34-49.
[17] Y. Y. Li, On $-\Delta u=K(x) u^{5}$ in \mathbb{R}^{3}, Comm. Pure Appl. Math. 46 (1993), 303-340.
[18] Y. Li and W. M. Ni, On conformal scalar curvature equations in \mathbb{R}^{n}, Duke Math. J. 57 (1988), 895-924.
[19] \qquad , On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in \mathbb{R}^{n}. I. Asymptotic behavior. II. Radial symmetry, Arch. Rational Mech. Anal. 118 (1992), 195-222 and 223-243.
[20] P. L. Lions, The concentration-compactness principle in the Calculus of Variations. The locally compact case, I, II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-145 and 223-283.
[21] \qquad , The concentration-compactness principle in the Calculus of Variations. The limit case, I, II, Rev. Mat. Iberoamericana 1 (1985), 145-201, and 2 (1985), 45-121.
[22] K. Melouah, Quelques résultats d'existence pour des problèmes elliptiques non linéaires dans des ouverts non bornés, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 1029-1034.
[23] W. M. Ni, Some aspects of semilinear elliptic equation on \mathbb{R}^{n}, Nonlinear Diffusion Equations and Their Equilibrium States (W. M. Ni, L. A. Peletier and J. Serrin, eds.), vol. 2, Springer-Verlag, Berlin, 1988, pp. 171-205.
[24] \qquad , On the elliptic equation $\Delta u+K(x) u^{(n+2) /(n-2)}=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), 493-529.
[25] P. H. Rabinowitz, A note on a semilinear elliptic equation on \mathbb{R}^{n}, Nonlinear Analysis. A Tribute in Honour of Giovanni Prodi (A. Ambrosetti and A. Marino, eds.), Quaderni Scuola Norm. Sup., Pisa, 1991, pp. 307-317.
[26] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1979), 149-162.

Roberta Musina

Dipartimento di Matematica ed Informatica
Università degli Studi
via delle Scienze, loc. Rizzi
Udine, ITALY

[^0]: 1991 Mathematics Subject Classification. 35J60.

