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Much interest has been paid in recent years to the Kazdan–Warner problem:

(0)

{
−∆u + λu = k(x)u2∗−1, u > 0, in Rn,

u → 0 at ∞

(see for example [3], [8], [9], [14], [17]–[19], [24] and the references therein). Here,
λ ∈ R is a positive parameter, k is a given smooth function on Rn, n ≥ 3, and
2∗ = 2n/(n− 2) is the critical Sobolev exponent. Problem (0) has a geometrical
relevance, since for λ = 0 every solution to (0) gives rise, up to a stereographic
projection, to a metric g on the sphere whose scalar curvature is proportional
to k(x). From the point of view of the Calculus of Variations the interest in the
Kazdan–Warner problem is due to the role of the noncompact group of dilations
in Rn. This produces quite a large spectrum of phenomena, like concentrations
of maps, lack of compactness, failure of the Palais–Smale condition and nonex-
istence results.

In the spirit of the paper by Coron [11] (see also [2]) one may ask if the
coefficient k(x) affects the topology of the energy sublevels. In this paper we
give an answer to this question in the subcritical case. Namely, we study the
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“perturbed” problem

(1)

{
−∆u + λu = k(x)up−1, u > 0, in Rn,

u ∈ H1(Rn),

where p < 2∗ is close to the critical exponent 2∗. Our aim is to use some
variational arguments which are due to Benci and Cerami [5] (see also [6]) in
order to relate the topology of the sublevels of the energy functional to the
topology of the superlevels {z ∈ Rn | k(z) ≥ t} for t > 0. Our assumptions on
the map k are the following:

(k1) k : Rn → R is continuous;
(k2) the limit k∞ = lim|z|→∞ k(z) exists;
(k3) there exists z0 ∈ Rn such that k(z0) > k+

∞ = max{k∞, 0}.

Notice that under these assumptions the map k is bounded, and the set

M = {z ∈ Rn | k(z) = max
z∈Rn

k(z)}

is compact. Writing Mδ = {x ∈ Rn | d(x,M) ≤ δ} for δ > 0, and denoting by
catMδ

(M) the Lusternik–Schnirelman category of the set M in Mδ, we compare
the category of some energy sublevels with catMδ

(M). Notice that catMδ
(M) =

cat(M) for M regular and δ small (see Section 1). The first result we obtain is
the following.

Theorem A. Assume that k satisfies (k1), (k2) and (k3). Then for every
δ > 0 there exists a pδ < 2∗ such that for p ∈ [pδ, 2∗[ problem (1) has at least
catMδ

(M) (weak) solutions.

We point that the solutions in Theorem A are close to the ground state
solution. Moreover, they concentrate as p → 2∗, and then they disappear. The
further solution of the next theorem has higher energy and it appears when M

has a rich topology. It would be of interest to investigate whether this solution
survives as p → 2∗.

Theorem B. Assume that k satisfies (k1), (k2) and

(k∗3) there exists a t ∈ ]k+
∞,maxRn k[ such that M is contractible in the set

{z ∈ Rn | k(z) ≥ t}.

If catMδ
(M) > 1 for some δ > 0, then for p close to 2∗, problem (1) has at

least catMδ
(M) + 1 solutions.

We illustrate Theorem B with a simple example, in which we use some re-
marks of Section 1.
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Example. Assume that the map k satisfies (k1) and (k2). Assume also that
M ⊆ BR, and minBR

k > k+
∞ for some R > 0. If k has s > 1 maximum points,

then problem (1) has at least s + 1 solutions.

The blow-up analysis of Section 3 gives more information in the radially
symmetric case. In Section 5 we prove as an example the following theorem.

Theorem C. Assume that k = k(r) is a radially symmetric map satisfying
(k1), (k2) and (k3). Assume also that maxr≥0 k(r) is achieved at s ≥ 1 points,
and that 0 is not a maximum point. Then for every p close to 2∗ problem (1)
has at least 2s non-radially symmetric solutions.

The method we adopt can also be applied to study problem (1) where λ

is a varying parameter and p < 2∗ is fixed. Thus, when λ is large enough we
get theorems analogous to Theorems A, B and C. There are many papers that
treat equations like (1) on Rn, in the subcritical case. We quote for example
the papers [1], [4], [7], [12], [13], [16], [20], [22], [23], [25], [26]. An extensive
bibliography on this subject is contained in [12].

Notation. For every real function g we set g+ = max{g, 0} and g− =
min{g, 0}. We recall that g+, g− ∈ H1 if g ∈ H1, and ∇g± = ∇g a.e. on
{x | ±g ≥ 0}.

1. The Lusternik–Schnirelman category. Examples

Let M be a closed subset of a topological space X. We recall that the
Lusternik–Schnirelman category catX(M) of the set M in X is the least integer
σ such that M can be covered by σ closed subsets A1, . . . , Aσ of M such that
for all i, Ai is contractible in X. This means that for every index i, there exists
a continuous homotopy Hi : [0, 1] × Ai → X joining the inclusion Ai → X to
a constant map. If no such integer exists, then by definition catX(M) = ∞. If
M = X we write catM (M) = cat(M).

We notice that cat(M) ≥ catX(M), and equality holds if there exists a
continuous retraction r : X → M such that r(x) = x on M . In Theorem A we
are interested in the case when M is a compact subset of Rn, and X = Mδ for
some δ positive, where Mδ is the set of points whose distance from M is not
greater than δ. Now we exhibit some examples in which catMδ

(M) is a good
approximation for cat(M) for small δ. We omit the simple proofs.

Example 1.2. In the following examples we have catMδ
(M) = cat(M) for

δ small.

(i) M is the closure of a bounded open set having smooth boundary.
(ii) M is a smooth and compact submanifold of Rn.
(iii) M is finite set. Then catMδ

(M) = cat(M) = cardinality of M .
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In the next example catMδ
(M) approaches cat(M), even if the sets Mδ do

not retract on M .

Example 1.3. Let xk → x0 be a convergent sequence in Rn such that xk 6= x

for infinitely many indices k. Set M = {xk | k ≥ 1}∪{x}. Then catMδ
(M) < ∞

for all δ, and limδ→0 catMδ
(M) = ∞.

2. The variational approach

Our first hypotheses on the map k are the following:

(2.1) k ∈ C0 ∩ L∞(Rn) and k is positive at some point z ∈ Rn.

We notice that it is not restrictive to assume

(2.2) sup
Rn

k = 1.

For p ∈ ]2, 2∗[ and for λ > 0 we set

Σ =
{

u ∈ H1(Rn)
∣∣∣∣ ∫

Rn

(|∇u|2 + λ|u|2) = 1 and
∫

Rn

k(x)|u+|p > 0
}

,

Jp(u) =
( ∫

Rn

k(x)|u+|p dx

)−2/(p−2)

, Jp : Σ → R.

Notice that σ is a nonempty smooth submanifold of the Sobolev space H1(Rn),
and that the functional Jp is smooth on Σ. Moreover, it is positive on Σ by (2.2)
and the Sobolev embedding theorem. Now we prove that every critical point for
Jp on Σ is, up to a Lagrange multiplier, a weak solution to problem (1). First
we compute

(∇J |Σ)(u) =
2p

p− 2
Jp(u)(u− Jp(u)(p−2)/2(−∆ + λ)−1(k(u+)p−1)).

Therefore, a critical point for Jp on Σ is a weak solution to

−∆u + λu = Jp(u)(p−2)/2k(x)(u+)p−1 in Rn.

Multiplying this equation by u− we readily get
∫

(|∇u−|2 + λ|u−|2) = 0, hence
u ≥ 0 a.e. and u = u+. Thus, u is a weak solution to −∆u + c(x)u =
Jp(u)(p−2)/2k(x)+up−1 for some coefficient c(x) > 0, which is locally bounded
by the elliptic regularity theory. Therefore, standard maximum principles give
u > 0 in Rn, and hence u solves (1). Now we define

mp(k) = inf
u∈Σ

Jp(u) = inf
u∈Σ

( ∫
Rn

k(x)|u+|p dx

)−2/(p−2)

.

The first step is compare the infimum mp(k) with the best Sobolev constant S:

(2.3) S = inf
U∈D1(Rn)

∫
|∇U |2

[
∫
|U |2∗ ]2/2∗

,
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where D1(Rn) is the completion of C∞0 (Rn) with respect to the norm
(
∫

Rn |∇U |2)1/2.

Lemma 2.1. Assume that k satisfies (2.1) and (2.2). Then

mp(k) → Sn/2 as p → 2∗.

Proof. Fix any u in Σ. Since k ≤ 1 on Rn, by the Hölder inequality we
first get ( ∫

k(x)|u+|p
)(2∗−2)/(p−2)

≤
( ∫

|u+|2
)(2∗−p)/(p−2) ∫

|u+|2
∗

≤ λδ(p)

∫
|u+|2

∗
,

where δ(p) is an exponent such that δ(p) → 0 as p → 2∗. From the definition of
the best Sobolev constant S and from

∫
|∇u+|2 ≤ 1 we infer that

S ≤ inf
u∈Σ

∫
|∇u+|2

(
∫
|u+|2∗)2/2∗

≤ λ2δ(p)/2∗mp(k)2/n.

This proves that Sn/2 ≤ lim infp→2∗ mp(k). Conversely, let ε > 0, and fix a map
ϕ ∈ H1 ∩ C0(Rn) having compact support, and such that ϕ ≥ 0,

∫
|∇ϕ|2 = 1,

and (
∫
|ϕ|2∗)−2/2∗ ≤ S + ε. Fix a point z ∈ Rn with k(z) > 0. For every

positive µ we set ϕµ = µ−n/2∗ϕ((x − z)/µ). For µ small enough it results that∫
k(x)|ϕ|p > 0. Testing mp(k) with the map ϕµ, we see that for µ small,

mp(k) ≤ µ(n−2)p/(p−2)

( ∫
|∇ϕ|2 + λµ2

∫
|ϕ|2

)p/(p−2)

×
( ∫

k(x)
∣∣∣∣ϕ(

x− z

µ

)∣∣∣∣p dx

)−2/(p−2)

≤ µ−(n−2)(2∗−p)/(p−2)(1 + ε)p/(p−2)

( ∫
k(µx + z)|ϕ(x)|p dx

)−2/(p−2)

.

Passing to the limit as p → 2∗ and then as µ → 0 we get

lim sup
p→2∗

mp(k) ≤ (1+ε)n/2

(
k(z)

∫
|ϕ|2

∗
)−n/2∗

≤ (1+ε)n/2k(z)−n/2∗(S +ε)n/2.

Letting ε go to zero we get lim supp→2∗ mp(k) ≤ k(z)−n/2∗Sn/2, and the conclu-
sion readily follows, by taking the infimum over all z ∈ Rn. �

The next results are based on the concentration-compactness lemma by
P. L. Lions. From now on we agree that 1/0 = +∞. We remark that assumptions
(k1), (k2) and (2.2) imply

mp(1) ≤ mp(k) ≤ (k+
∞)−2/(p−2)mp(1).
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The left hand side inequality is trivial, from k ≤ 1. The proof of the last
inequality can be found in [20], I.2, and it is based on a translation argument.
In the paper by P. L. Lions the significance of the strict inequality

(2.4) mp(k) < (k+
∞)−2/(p−2)mp(1)

is also underlined. Inequality (2.4) holds true for example if k∞ ≤ 0, or if k is
nonconstant and k(z) ≥ k+

∞ for all z ∈ Rn. In Section 3 (see Corollary 3.6) we
shall prove that (2.4) holds if k satisfies the weaker assumption (k3), provided p

is sufficiently close to 2∗. The next result is meaningful only if (2.4) is satisfied.

Lemma 2.2. Let p < 2∗ and assume that k satisfies the assumptions (k1),
(k2) and (2.2). Then the functional Jp satisfies the Palais–Smale condition on
the set

{u ∈ Σ | Jp(u) < (k+
∞)−2/(p−2)mp(1)}.

Proof. The proof is essentially contained in [20], Section I.2. Nevertheless
we present it here in order to make the paper self-contained. Let (uh)h be a
sequence in Σ such that

(∇J |Σ)(uh) → 0,(2.5)

Jp(uh) → c < (k+
∞)−2/(p−2)mp(1)(2.6)

as h → ∞. First, notice that c > 0. We apply the concentration-compactness
lemma [20] to the sequence of measures %h = |∇uh|2 + λ|uh|2. Standard argu-
ments show that vanishing and dichotomy cannot occur. Thus, the sequence
(%h)h is tight, that is, there exist a subsequence (%h)h and a sequence of points
(zh)h in Rn such that

(2.7) ∀ε > 0 ∃R > 0:
∫

B(zh,R)

(|∇uh|2 + λ|uh|2) ≥ 1− ε.

Now we prove that the sequence (zh)h is bounded. Suppose by contradiction
that |zh| → ∞, and set ûh = uh(· + zh). Since ûh ∈ Σ, we can assume that
ûh → V weakly in H1 for some function V satisfying

∫
(|∇V |2 + λ|V |2) ≤ 1 by

semicontinuity. From (2.7) and from the Rellich theorem we get ûh → V in Lp

and hence also û+
h → V + in Lp. Thus, from the assumptions on k and from

|zh| → ∞ we infer
∫

k(x)|u+
h |p → k∞

∫
|V +|p. This implies first that k∞ > 0,

since c > 0. Moreover, it proves that
∫
|V +|p = k−1

∞ c−(p−2)/2 > 0. Therefore,
testing mp(1) with the map V we get

mp(1) ≤
( ∫

|V +|p
)−2/(p−2)

= k−2/(p−2)
∞ c < mp(1),
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a contradiction. This proves that the sequence (zh)h is bounded. But then we
can take zh = 0 for all h in (2.6), that is, we have proved that

∀ε > 0 ∃R > 0:
∫

B(0,R)

(|∇uh|2 + λ|uh|2) ≥ 1− ε.

Arguing as before, we find that there exists u ∈ Σ such that (for a subsequence)
uh → u weakly in H1 and strongly in Lp. In particular, from (2.6) it follows
that c = Jp(u), and from (2.5) it follows that u is a weak solution to

(2.8) −∆u + λu = c(p−2)/2k(x)(u+)p−1.

Using u as test function in (2.8) we get
∫

(|∇u|2 + λ|u|2) = 1. Since uh → u

weakly in H1, and since
∫

(|∇uh|2 + λ|uh|2) = 1 for every h, this is sufficient to
conclude that uh → u strongly in H1. �

3. The concentration behaviour

Let U be a positive and radially symmetric function which minimizes the
L2∗ norm on the sphere {u ∈ D1(Rn) |

∫
|∇u|2 = 1} (see [21]). We also recall

that U is positive and smooth, and it is strictly decreasing as a function of the
radius. For µ > 0 and z ∈ Rn we set

Uµ,z(x) = µ−n/2∗U

(
x− z

µ

)
and Uµ(x) = Uµ,0(x) = µ−n/2∗U(x/µ).

A simple computation shows that for every µ,∫
|∇Uµ,z|2 = 1,

∫
|Uµ,z|2

∗
= S−2∗/2,

|∇Uµ,z|2 → δz, |Uµ,z|2
∗
→ S−2∗/2δz as µ → 0

weakly in the sense of measures, where δz = Dirac mass at z ∈ Rn.
In the following, ap will denote any function of p ∈ ]2, 2∗[ such that we have

ap −mp(k) → 0+ as p → 2∗. In particular, ap → Sn/2 by Lemma 2.1.

Proposition 3.1. Assume that k satisfies the assumptions (k1), (k2) and
(2.2). Then, for every sequence up ∈ Σ with Jp(up) ≤ ap, we have up → 0
in L2(Rn) and up − u+

p → 0 in H1(Rn). Moreover, there exist a subsequence
ph → 2∗, a sequence (zh)h of points with k(zh) → 1, and a sequence (µh)h of
positive numbers with µh → 0, such that

|u+
ph
|ph − |Uµh,zh

|2
∗
→ 0 in L1(Rn),

∇(uph
− Uµh,zh

) → 0 in L2(Rn)n,

uph
− Uµh,zh

→ 0 in L2∗(Rn) as h →∞.
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Proof. Let up be as in the statement. The proof will be divided into several
steps.

Step 1: up → 0 in L2, up − u+
p → 0 in H1. Compactness up to translations

and dilations. Using the arguments in the proof of Lemma 2.1 and the Sobolev
theorem we get the following chain of inequalities:( ∫

k(x)|u+
p |p

)(2∗−2)/(p−2)

≤
( ∫

|u+
p |p

)(2∗−2)/(p−2)

≤
( ∫

|u+
p |2

)(2∗−p)/(p−2) ∫
|u+

p |2
∗

≤ λ−δ(p)

∫
|u+

p |2
∗
≤ λ−δ(p)S−2∗/2

( ∫
|∇u+

p |2
)2∗/2

≤ λ−δ(p)

( ∫
|∇u|2

)2∗/2

S−2∗/2 ≤ λ−δ(p)S−2∗/2,

where δ(p) → 0 as p → 2∗. Therefore, Lemma 2.1 and Jp(up) ≤ ap give

(3.1) S−2∗/2 = lim
p→2∗

∫
k(x)|up|p = lim

p→2∗

∫
|up|p = lim

p→2∗

∫
|up|2

∗
,

and also

lim
p→2∗

∫
|∇up|2 = lim

p→2∗

∫
|∇u+

p |2 = 1.

First we observe that this last equality implies up → 0 in L2 and also u+
p → 0

in L2, since up ∈ Σ for every p. We also infer that up − u+
p → 0 in H1. Hence,

from now on we can assume, without restriction, that up = u+
p . From (3.1) we

see that up approaches the best Sobolev constant S. An application of a result
by P. L. Lions [21], Theorem I.1 and Corollary I.1, proves that the sequence up

is relatively compact in D1 up to translations and changes of scale. This means
that for a sequence ph → 2∗, there exist sequences (µh)h of positive numbers,
and (zh)h of points, such that the rescaled sequence ûh(x) = µ

n/2∗

h uph
(µhx+zh)

satisfies: ∇ûh → ∇U in L2, ûh → U in L2∗ and almost everywhere. In particular,
we also get ∇(uph

− Uµh,zh
) → 0 in L2 and uph

− Uµh,zh
→ 0 in L2∗ .

Step 2: µh → 0. Notice that limh

∫
B(0,1)

|ûh|2 =
∫

B(0,1)
U2 > 0 by the

Rellich theorem. Therefore, Step 2 follows from

o(1) =
∫

Rn

|uph
|2 ≥

∫
B(zh,µh)

|uph
|2 = µ2

h

∫
B(0,1)

|ûh|2.

Step 3: ηh := (µh)n(1−ph/2∗) → 1. Set fh = ηh|ûh|ph . Notice that fh ≥ 0
and

∫
fh =

∫
|up|p → S−2∗/2 by (3.1). Then by Fatou’s lemma we infer that (for

a subsequence) the pointwise limit of fh is a.e. finite. Therefore, ηh → η < ∞
and fh → ηU2∗ a.e. Now consider the sequence gh = ηh|ûh|ph − |ûh|2

∗
. We have
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gh ∈ L1, gh → (η − 1)U2∗ a.e., and
∫

gh → 0 by (3.1). But this immediately
gives η = 1, and Step 3 is concluded.

Step 4: |ûh|ph → U2∗ in L1. This easily follows from the Lebesgue and
Fatou theorems, since |ûh|ph , U2∗ ∈ L1, |ûh|ph → U2∗ almost everywhere, and∫
|ûh|ph →

∫
U2∗ by (3.1) and Step 3. Notice that Steps 3 and 4 imply in

particular that |uph
|ph − |Uµh,zh

|2∗ → 0 in L1.

Step 5: completion of the proof. Using the first equality in (3.1) and Step 3
we get

(3.2) S−2∗/2 =
∫

k(µhx + zh)|ûh(x)|ph dx + o(1).

First we assume that the sequence zh is bounded. In this case, we can pass
to a subsequence to have zh → z for some point z. Thus the continuity of k,
Step 2, Step 4 and (3.2) lead to S−2∗/2 = k(z)S−2∗/2, and hence k(z) = 1. In
case |zh| → ∞, one has only to replace k(z) by k∞ and to repeat the same
argument. �

Remark 3.2. Suppose that, in addition, k satisfies (k3). Then the set M is
compact, and therefore there exists a point z ∈ M such that zh → z as h →∞.

Proposition 3.1 can be improved in the radially symmetric case, as is shown
in the next result. In that case, the present blow-up analysis has some corollaries
which will be stated in Section 5. In particular, it turns out that in the radially
symmetric case the maps up cannot “concentrate at infinity”, essentially because
they are uniformly bounded in L2(Rn).

Proposition 3.3. Let k and up be as in Proposition 3.1. Suppose that for
every p, the map up is radially symmetric. Then the conclusion of Proposition
3.1 holds with zh = 0 for every h.

Proof. By Proposition 3.1, the sequence ûh(x) = µ
n/2∗

h uph
(µhx + zh) con-

verges in D1(Rn) to the map U , for some sequences µh → 0, (zh)h in Rn. We
just have to prove that zh/µh → 0 as h → ∞, since in this case the sequence
ûh(x) can be replaced with ûh(x) = µ

n/2∗

h uph
(µhx) = ûh(x − zh/µh). Assume

by contradiction that for some subsequence we have |zh|/µh ≥ 2δ > 0. Since
uph

− Uµh,zh
→ 0 in L2∗(Rn), and since uph

is radially symmetric, we get∫
B(0,δ)

U2∗ =
∫

B(zh,δµh)

|uph
|2
∗

+ o(1) =
∫

B(−zh,δµh)

|uph
|2
∗

+ o(1)

=
∫

B(−2zh/µh,δ)

U2∗ + o(1).

This immediately leads to a contradiction, since U = U(|x|) is smooth
and strictly decreasing, and therefore from | − 2zh/µh| ≥ 4δ it follows that
min|x|≤δ U2∗ > max|x|≥2δ U2∗ . �
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Now, let p ∈ ]2, 2∗[, and consider the minimization problem

(3.3) mp(1) = inf
V ∈Σ

( ∫
|V |p

)−2/(p−2)

.

It is well known that (3.3) has a positive solution (see for example [20]), which is
unique up to translations by a result of Kwong [15]. We denote by Vp the radially
symmetric solution of (3.3). An application of Proposition 3.3 with k ≡ 1 gives
the next result.

Corollary 3.4. As p → 2∗, we have

(i) Vp → 0 in L2(Rn);
(ii) |∇Vp|2 → δ0 weakly in the sense of measures;
(iii) |Vp|p → S−2∗/2δ0 weakly in the sense of measures.

As in the paper by Benci and Cerami [5], we define two continuous maps
β : Σ → Rn and Φp : Rn → Σ. For p < 2∗ we set

Φp(z) := Vp(· − z) for z ∈ Rn.

Let R > 0 be large enough, so that in particular M is contained in the ball
BR = {x | |x| ≤ R}. Fix a smooth and bounded map ϕ : Rn → Rn such that
ϕ has compact support, and ϕ(x) = x if |x| ≤ R. We define a “barycentre”
function

β(u) =
∫

Rn

ϕ(x)(|∇u|2 + λu2) dx for u ∈ Σ.

We also set

Jap
p = {u ∈ Σ | Jp(u) ≤ ap}.

Corollary 3.5. Assume that k satisfies (k1), (k2), (k3) and (2.2). Then,
as p → 2∗,

(i) β(Φp(z)) = z + o(1) uniformly for z ∈ BR;
(ii) Φp(z) ∈ Σ and Jp(Φp(z)) = mp(k) + o(1) uniformly for z ∈ M ;
(iii) sup{d(β(u),M) | u ∈ J

ap
p } → 0.

Proof. Assertions (i) and (ii) are easy consequences of Corollary 3.4 (use
also the fact that M is compact). Now we prove (iii). For a sequence p → 2∗,
let up ∈ J

ap
p . Then, by Proposition 3.1 and Remark 3.2, we find that for a

subsequence ph, and for sequences µh → 0 and zh → z with z ∈ M , we have
uph

→ 0 in L2 and ∇(uph
− Uµh,zh

) → 0 in L2. Then by the continuity of β we
get β(uph

) =
∫

ϕ(x)|∇Uµh,zh
| + o(1) = z, since |∇Uµ,z|2 → δz uniformly for z

on bounded sets, and since ϕ(z) = z on M . �
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Corollary 3.6. Assume that k satisfies (k1), (k2), (k3) and (2.2). Then
for every t ∈ ]k+

∞, 1] there exists pt < 2∗ such that for p ∈ [pt, 2∗[ we have

(i) Φp(z) ∈ Σ if k(z) ≥ t;
(ii) max{Jp(Φp(z)) | z ∈ Rn, k(z) ≥ t} < (k+

∞)−2/(p−2)mp(1).

In particular, mp(k) < (k+
∞)−2/(p−2)mp(1) for every p close to 2∗.

Proof. (i) follows from Corollary 3.4(iii), since the set {z ∈ Rn | k(z) ≥ t}
is compact. To prove (ii) it is sufficient to assume k∞ > 0. Fix a t ∈ ]k∞, 1], and
write t = ϑk∞ for ϑ > 1. Using Corollary 3.4(iii) and Lemma 2.1, we deduce
that for p close to 2∗,

Jp(Φp(z))−(p−2)/2 = k(z)S−2∗/2 + o(1) ≥ ϑk∞mp(1)−2∗/n + o(1)

uniformly on {z ∈ Rn | k(z) ≥ t}. Thus,

k2/(p−2)
∞ mp(1)−1 max

k(z)≥t
Jp(Φp(z)) ≤ ϑ−2/(p−2)mp(1)(2

∗−2)/(p−2) + o(1)

= ϑ−2/(p−2) + o(1),

and the conclusion follows. �

4. Proofs

We follow the method developed by Benci and Cerami in [5].

Proof of Theorem A. The map k satisfies (k1), (k2), (k3) and the non-
restrictive condition (2.2). Assume that the functional Jp has a finite number
of critical points, and fix a δ > 0. For every p sufficiently close to 2∗, we fix a
number ap < (k+

∞)−2/(p−2)mp(1) such that ap is not a critical value for Jp, and
such that

Φp(z) ∈ Σ and Jp(Φp(z)) < ap ∀z ∈ M,(4.1)

ap −mp(k) → 0 as p → 2∗(4.2)

(use Corollary 3.5(ii) and Corollary 3.6). Next, fix a radius R such that M ⊆ BR.
Define the maps β and Φp as in Section 3. By Corollary 3.5(i), (iii) for p close
to 2∗ (p will depend on δ),

|β(Φp(z))− z| < δ ∀z ∈ BR,(4.3)

β(Jap
p ) ⊆ Mδ.(4.4)

We claim that

(4.5) the composite map β ◦ Φp is homotopic to the inclusion M → Mδ.
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In fact, it suffices to consider the homotopy α(t, x) = x + t(β(Φp(x))− x), since
by (4.1) and (4.3) we have d(α(t, x),M) ≤ |β(Φp(x)) − x| ≤ δ for every x ∈ M

and t ∈ M and t ∈ [0, 1], that is, α maps [0, 1]×M into Mδ.
Notice that by Lemma 2.2 the functional Jp satisfies the Palais–Smale con-

dition in J−1
p ([mp(k), ap]). Hence, by standard Lusternik–Schnirelman theory,

to conclude the proof it suffices to show that

(4.6) cat(Jap
p ) ≥ catMδ

(M).

In the following, we denote by Φp the restriction of the map Φp to M . Hence,
Φp : M → J

ap
p by (4.1). Suppose that A1, . . . , Aσ is a closed covering of J

ap
p such

that for every i, there exists a homotopy Hi : [0, 1]×Ai → J
ap
p with Hi(0, u) = u

for u ∈ Ai and Hi(1, ·) = constant for i = 1, . . . , σ. Set Ci = Φ−1
p (Ai). Then Ci

is closed in M for all i, and the union of the sets Ci covers M . In order to prove
(4.6) it suffices to show that the sets Ci are contractible in Mδ. This is readily
done by using the homotopy hi(t, x) = β(Hi(t,Φp(x))), hi : [0, 1] × Ci → Mδ

(use (4.4) and (4.5)). This completes the proof of Theorem A. �

Proof of Theorem B. The map k satisfies (k1), (k2), (k∗3) and the non-
restrictive condition (2.2). Assume again that the functional Jp has a finite
number of critical points, and fix δ > 0 such that catMδ

(M) > 1. Take p close
to 2∗, and define ap as before. Fix the value t ∈ ]k∞,maxRn k[ such that M is
contractible in C := {z ∈ Rn | k(z) ≥ t} (assumption (k∗3)). Fix a radius R such
that C ⊆ BR, and define the maps β and Φp as in Section 3. For p close to 2∗

we get the validity of (4.3) and (4.4), and moreover Φp(C) ⊆ Σ by Corollary 3.6.
In addition, if p is close to 2∗, then we can choose bp > ap such that bp is not a
critical level for Jp, and such that

bp > max
x∈C

Jp(Φp(x)),(4.7)

bp < k−2/(p−2)
∞ mp(1).(4.8)

Notice that this is possible if p is large enough, by Corollary 3.6(ii). Notice
also that by Lemma 2.2 and (4.8) the functional Jp satisfies the Palais–Smale
condition on J

bp
p . Assume that Jp has no critical points with energy in [ap, bp].

In this case we can use a deformation lemma and (4.1) to construct a map
α : J

bp
p → J

ap
p such that α(Φp(z)) = Φp(z) for z ∈ M (notice that Φp(M) is a

compact subset of Σ). Let h : [0, 1]×M → C be a continuous homotopy joining
the inclusion M → C to a constant map, and then define the map

H(s, x) = β(α(Φp(h(s, x)))), H : [0, 1]×M → Mδ

(use (4.7) and (4.4)), which is a homotopy between β ◦ Φp and a constant map.
Since, as before, the map β ◦ Φp is homotopic to the inclusion M → Mδ, this
proves that M is contractible in Mδ, contrary to the assumption catMδ

(M) > 1.�
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5. The radially symmetric case

We conclude this paper with some remarks in case k is a radially symmetric
function satisfying (k1), (k2) and the nonrestrictive condition max k = 1. Set

Σs = {u ∈ Σ | u is radially symmetric}, ms
p(k) = inf

u∈Σs
Jp(u),

so that ms
p(k) ≥ mp(k) > 0. Since k is radially symmetric, it turns out that

every critical point of the functional Jp on Σs is, up to a Lagrange multiplier,
a solution to (1). We recall that by a result of Strauss [26] (see also [10] and
[7]), for every p ∈ [2, 2∗[ the restriction of the embedding H1(Rn) → Lp(Rn) to
the subspace of radially symmetric functions is compact. Therefore, standard
arguments show that the infimum ms

p(k) is achieved on Σs, and hence problem
(1) has always a radially symmetric solution (see also [26]). The aim of this
section is to give some estimates for ms

p(k) as p → 2∗, in order to prove the
existence of non-radially symmetric solutions.

Lemma 5.1.

Sn/2 ≤ lim inf
p→2∗

ms
p(k) ≤ lim sup

p→2∗
ms

p(k) ≤ (k(0)+)−n/2∗Sn/2.

Proof. The left-hand side inequality follows from ms
p(k) ≥ mp(k) and

from Lemma 2.1. Assume k(0) > 0, fix an ε > 0, and choose a nonnega-
tive and radially symmetric function ϕ ∈ C∞0 (Rn) such that

∫
|∇ϕ|2 = 1 and

(
∫
|ϕ|2∗)−2/2∗ ≤ S + ε. Arguing as in the second part of the proof of Lemma 2.1

we see that for every µ > 0 small enough,

ms
p(k) ≤ µ−(n−2)(2∗−p)/(p−2)(1 + ε)p/(p−2)

( ∫
k(µx)|ϕ(x)|p dx

)−2/(p−2)

.

Passing to the limit as p → 2∗ and then as µ → 0 we get

lim sup
p→2∗

ms
p(k) ≤ (1 + ε)n/2

(
k(0)

∫
|ϕ|2

∗
)−n/2

≤ (1 + ε)n/2k(0)−n/2∗(S + ε)n/2.

Letting ε go to zero we get lim supp→2∗ ms
p(k) ≤ k(0)−n/2∗Sn/2, and the conclu-

sion follows. �

Proposition 5.2. lim infp→2∗ ms
p(k) > Sn/2 if and only if k(0) < 1.

Proof. If k(0) = 1 then by Lemma 5.1, ms
p(k) → Sn/2. Conversely, if

it is possible to find a sequence (up)p in Σs such that Jp(up) − mp(k) → 0 as
p → 2∗, then by Proposition 3.1 a subsequence uph

concentrates along a sequence
of points zh, with k(zh) → 1. On the other hand, up is radially symmetric for
every p, and hence by Proposition 3.3 we can take zh = 0 for all h, which implies
in particular k(0) = 1.
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Corollary 5.3. Assume that k satisfies also (k3) and k(0) < 1. Then, for
p close to 2∗, the least energy solution to (1) is not radially symmetric.

Proof. By Lemma 2.2 and Corollary 3.6 the infimum mp(k) is achieved on
Σ. Since mp(k) → Sn/2 as p → 2∗, for p close to 2∗ we have mp(k) < ms

p(k),
and the conclusion follows. �

Proof of Theorem C. Let k be as in Theorem C, and assume also that
max k = 1. Under these assumptions, the set M is the union of s spheres, and
hence catMδ

(M) ≥ 2s for δ small (see Section 2). Theorem C follows from the
proof of Theorem A. We just have to notice that ap < ms

p(k) for p close to 2∗,
since ap → Sn/2 < lim infp→2∗ ms

p(k) by Lemma 2.1 and Proposition 5.2. �

It would be of interest to give more information on the behaviour of ms
p(k)

as p → 2∗. Since a deeper analysis of this subject goes far beyond the aim of the
present paper, we do not enter into details.
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