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1. Introduction

Amongst Professor Nirenberg’s many distinguished contributions to free-
boundary questions (e.g. [32]–[36]) is his joint work with Littman on Levi-Civita’s
formulation of the classical water-wave problem from nonlinear hydrodynamics.
Their treatment of small amplitude periodic waves on water of infinite depth is
the one which Stoker included in his influential treatise on water waves ([53],
p. 522 and [41], p. 242). The present purpose, forty years on, is to give a self-
contained analysis of a global continuum of waves from zero up to and including
the limiting Stokes wave of greatest height with its well-known contained angle
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of 120 degrees. The methods involved have been heavily influenced by Professor
Nirenberg’s work, combining as they do continuation methods with the Maxi-
mum Principle and Hopf boundary-point lemma [24], global bifurcation theory
which has its foundations in topological degree [48], and hard analytic estimates
based upon integral equations. There is now a substantial body of such ana-
lytic theory and a review seems timely. But important open questions remain
(Section 13): for example, the convexity of the Stokes wave of greatest height is
unproven, and there is no rigorous theory of secondary bifurcation.

In order to show the existence of periodic water waves, both Nekrasov [46],
[47] and Levi-Civita [39] used conformal mappings to reduce the question to
one of existence of a harmonic function satisfying nonlinear Neumann boundary
conditions on a fixed domain. (The harmonic function in question is the angle
between the velocity vector in the flow and the horizontal, so its maximum is
a measure of the amplitude (crest-to-trough) of a wave. However, the fact that
it equals the angle of inclination of streamlines is central to an interpretation
of the theory.) These nonlinear Neumann problems were in turn formulated as
nonlinear integral equations [27], [45], [63], and the question of existence of small,
nonzero solutions addressed by power-series methods or iterative procedures [53].
Then, with a thorough understanding of the role of the implicit function theorem
in bifurcation theory [18], came recognition that the small amplitude theory for
periodic waves is a special case of bifurcation from a simple eigenvalue. (The
theory of periodic waves on water of finite depth is similar to that for infinite
depth [5], but the equally important question of the existence of solitary waves,
which Scott-Russell had discovered empirically on a canal in Scotland, is not
quite so straightforward [5], [6], [11], [23].)

The global theory of periodic waves began when Krasovskĭı [38] recognised
that Levi-Civita’s formulation of the water-wave problem could be regarded as
a nonlinear operator equation for elements of the cone of nonnegative functions
in a Banach space. He applied Krasnosel’skĭı’s [37] nonconstructive topological
methods for positive operator equations to prove the existence of a set of waves
where the maximum angle to the horizontal takes all values from zero up to, but
not including, π/6. The limiting value π/6 was particularly suggestive because
Stokes [54] had postulated that the form of steady waves is limited by an extreme
wave with two separate tangents making an angle of π/6 with the horizontal at
its crest. Also, there was a seemingly natural obstacle (connected with his use
of Zygmund’s theorem in conjugate function theory, [64], Ch. VII, (2.11)) to
an extension of his proof to obtain waves with greater maximum angle to the
horizontal. Krasovskĭı was therefore led to conjecture that his set contained all
waves which exist.
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With the invention by Rabinowitz [50] of abstract global bifurcation theory,
and its refinement for positive operators by Dancer [20] and Turner [60], a further
attack on the periodic water-wave problem by Keady and Norbury [31], who also
worked in the cone of nonnegative functions, was possible. They used Nekrasov’s
formulation and inferred the existence of a global connected set of solutions
which contains waves of all maximum angles from zero up to, but not including,
π/6. The Nekrasov formulation and global bifurcation theory led to the further
conclusion that this set contains waves with flow speeds at the wave crests,
relative to the wave speed, arbitrarily close to zero. The picture was further
refined when the existence of a solution of Nekrasov’s equation corresponding to
a wave with zero relative flow speed at its crest was shown to lie in the closure
(in an obvious sense) of the continuum which Keady and Norbury had found
[43], [57]. Such waves are said to have stagnation points at their crests and, as
was proved in [3], there is a corner at each crest with a contained angle of 120
degrees. Thus Stokes’ conjecture about the existence of a wave of extreme form
was proven. Earlier McLeod [43] had proved among other things that there are
waves with maximum angle to the horizontal strictly greater than π/6. Thus
Krasovskĭı’s conjecture is false.

In this paper we give complete proofs of the main results about the Stokes-
wave problem starting with its basic formulation as a free boundary problem
for a harmonic function in an unknown domain in the plane. At the outset
only the natural smoothness required to state the problem is assumed. (Indeed
the boundary is supposed only to be continuously differentiable, so that the
usual form of the Hopf boundary-point lemma [22], [25], [49] is not available for
the initial analysis; see, however, [25], p. 46.) Lewy’s theorem shows that the
boundary must be a real-analytic curve and that the complex potential must
have an analytic extension across the boundary. With such regularity up to
the boundary the equations can be manipulated at will and various estimates
on the wave slope and speed emerge from calculations involving the Maximum
Principle for harmonic functions in the plane. These matters are dealt with in
Sections 2–5, where the question of the existence of nontrivial Stokes waves is
ignored. (Uniform horizontal flow with any speed c is a trivial solution of the
free boundary-value problem.)

To formulate the boundary-value problem in a way which is amenable to
existence theory we follow Levi-Civita and Nekrasov who, in the 1920s, used a
hodograph transformation to map the unknown domain occupied by the water
into a fixed semi-infinite strip in a complex plane where the variable is the com-
plex potential of the fluid flow. As a function of this new independent variable,
the velocity field of the fluid is written in polar co-ordinates and the angular
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variable θ is regarded as an unknown harmonic function on the strip which sat-
isfies nonlinear boundary conditions. In Levi-Civita’s treatment the nonlinear
boundary conditions involve both θ and its complex conjugate (see (N3′) in Sec-
tion 6), whereas Nekrasov manipulated the equations to eliminate the conjugate
function and expressed the problem in terms of θ alone (see (N3), Section 6). In
Section 7 the problem is formulated as Nekrasov’s integral equation in a cone in
a Banach space of continuous functions. The cone involved [5] is a subset of the
cone of 2π-periodic, odd functions which are nonnegative on (0, π), the elements
of which enjoy two particular properties: θ(t)/sin(t/2) is nonnegative and nonin-
creasing of (0, π) and θ is decreasing on (π/2, π). The latter is important because
of its implication for the automatic convexity of a portion of the wave’s surface,
bearing in mind that θ is the angle between the free surface and the horizontal.
The former is important for compactness reasons. Helly’s Selection Theorem [56]
says that any bounded sequence of monotone functions has a subsequence which
converges everywhere, and hence is compact in Lp spaces on a bounded interval.
The use of the cone K therefore obviates the need for the Ascoli–Arzelà theo-
rem to obtain various compactness results. In particular, gradient estimates in
some earlier versions of the theory are systematically replaced here by arguments
based on membership of K. (It is interesting to observe that the proof that K
is invariant under the nonlinear operator which arises in Nekrasov’s equation
involves the Maximum Principle for a nonselfadjoint elliptic operator different
from the Laplacian [22], [25], [49].) A global existence theory for Nekrasov’s
integral equation in K now follows from classical global bifurcation theory, and
the existence of a solution corresponding to a wave with a stagnation point at
its crest is a trivial consequence of working in K and Helly’s Selection Theorem.
(Here the existence theory in K greatly simplifies some of the proofs in [43], [57].)

The paper then turns to an examination of the behaviour of large amplitude
Stokes waves whose existence has been established. We give the complete proofs
which McLeod and Amick used to establish that there are waves with maximum
angle to the horizontal greater than π/6 ( = 0.5236) but that the maximum angle
is bounded above by 0.5434. In the present treatment of McLeod’s lower-bound
result there are minor simplifications due to membership of K. In proving the
upper-bound results, the role of a particular harmonic function V (µ, θ) is taken
for granted even though it is far from obvious and its definition by Amick is at the
heart of his deep contribution to this problem. The proof here is further greatly
simplified by seeking a priori bounds only for solutions in a continuum which
bifurcates from the trivial solution. The power of continuation arguments in
alliance with Maximum Principles is well illustrated by the technique for obtain-
ing a priori bounds for this continuum. (See [24] for an alliance of continuation
arguments with the Maximum Principle with entirely different effect.)
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Section 12 considers the solution of Nekrasov’s equation which gives a wave
with a stagnation point at its crest. Armed with Amick’s estimates and using
the properties derived from membership of K, a proof of the Stokes conjecture
which differs only in some details from the original [3] completes this treatment
of Stokes waves on deep water.

Although this global theory might seem to offer a good account of steady, pe-
riodic water waves, there is strong numerical evidence that the problem is a great
deal more complex. The final section of the paper gives a very brief description of
how our present understanding fails to predict numerically-observed secondary
and subsequent bifurcations, and points to the need for further research.

2. The water-wave problem

In its simplest form the water-wave problem concerns two-dimensional mo-
tion of a perfect liquid with a free surface, acted on by gravity and surface
tension. Suppose, for definiteness, that in Cartesian co-ordinates gravity acts
in the negative y-direction and that the liquid at rest occupies the region {(x, y) :
−ĥ < y < 0}, for some fixed ĥ which may be infinite. In motion suppose for the
moment that the liquid surface S(t) at time t is the graph of a function:

S(t) = {(x, h(x; t)) : −∞ < x <∞}.

The velocity field is supposed to be the gradient of a time-dependent velocity po-
tential φ(·; t) which is required, by Bernoulli’s theorem and the natural kinematic
boundary conditions, to satisfy the following for t ∈ R:

∆φ(x, y; t) = 0, −ĥ < y < h(x; t), x ∈ R;

φy(x,−ĥ; t) = 0 if ĥ <∞;

∇φ(x, y; t) → (0, 0) as y → −∞ if ĥ = ∞;

ht(x; t) + hx(x; t)φx(x, h(x; t); t)− φy(x, h(x; t); t) = 0;

φt(x, h(x; t); t) + 1
2 |∇φ(x, h(x; t); t)|+ gh(x; t)

− σhxx(x; t)
(1 + hx(x; t)2)3/2

= const, x ∈ R.

Here g denotes the acceleration due to gravity, σ is the coefficient of surface
tension, subscripts, such as φx, φxy, denote partial derivatives, ∇φ = (φx, φy)
and ∆φ = φxx + φyy.

A steady wave is one in which the wave profile and the velocity field are both
stationary with respect to a frame of reference in uniform horizontal motion. To
find such a solution let

φ(x, y; t) = Φ(x− ct, y) and h(x; t) = H(x− ct).
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Then Φ and H are required to satisfy the following equations:

∆Φ(x, y) = 0, −ĥ < y < H(x), x ∈ R;

Φy(x,−ĥ) = 0 if ĥ <∞, x ∈ R;

∇Φ(x, y) → (0, 0) as y → −∞ if ĥ = ∞, x ∈ R;

(Φx(x,H(x))− c)H ′(x)− Φy(x,H(x)) = 0, x ∈ R;

−cΦx(x,H(x)) + 1
2 |∇Φ(x,H(x))|2 + gH(x)

− σH ′′(x)
(1 +H ′(x)2)3/2

= const, x ∈ R.

Here prime denotes differentiation with respect to the single variable, x.
When σ > 0 and g = 0 this is the capillary-wave problem and families of

solution are known in closed form [19]. When σ > 0 and g > 0 this is the
capillary-gravity wave problem and there is a huge and growing literature (see
[4], [12], [15], [28]–[30], [55], [59]). The case σ = 0 and g > 0 is the steady
gravity-wave problem of which Stokes waves are the classical periodic solutions.

3. Stokes waves on deep water

Historically speaking, the theoretically most important steady wave problem
is that which corresponds to symmetric, periodic waves travelling on the surface
of water which is at rest at infinite depth. Because of important numerical and
theoretical evidence about the existence of periodic waves of different types [9],
[17], [51], it is important to define carefully at the outset what in the sequel will
be referred to as a Stokes wave. Intuitively these are symmetric waves whose
profile rises and falls exactly once per wavelength. It is, however, unnecessary
to make further assumptions about its form; in particular, there is no need to
assume a priori that the free surface is the graph of a function. In the preceding
discussion define a (new) function φ by

φ(x, y) = Φ(x, y)− cx.

This reduces the problem to one of steady waves on the surface of a liquid moving
uniformly at infinite depth from right to left with speed c and the function φ

will be referred to as the relative-velocity potential. Suppose the waves have
period 2λ.

The two components of the Stokes-wave problem are (I) the free surface in
parametric form and (II) the relative stream function ψ which is a harmonic
conjugate of the relative-velocity potential.

I. Suppose that t → (X(t), Y (t)) is a continuously differentiable function
with the following properties:

(A) (X(t), Y (t)) = (−X(−t), Y (−t)) = (X(t+ 2λ)− 2λ, Y (t+ 2λ)), t ∈ R;
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(B) X(0) = Y (0) = 0;
(C) |X ′(t)|+ |Y ′(t)| > 0 and Y ′(t) ≥ 0, t ∈ [−λ, 0];
(D) (X(t1), Y (t1)) = (X(t2), Y (t2)) only if t1 = t2.

Let
S = {(X(t), Y (t)) : t ∈ R}.

Such a C1-curve S has unbounded horizontal and bounded vertical extent and
separates the plane into two unbounded components. By I(A) each of the lines
{x = kλ}, k ∈ Z, is a line of symmetry of S, and by I(D) each of these lines of
symmetry intersects S exactly once. Also by I(D) and I(A), X ′(0) > 0. Let Ω de-
note the component of R2\S which contains all points with −y sufficiently large.
The outward normal to Ω at (X(t), Y (t)), t ∈ R, is therefore (−Y ′(t), X ′(t)), by
continuity since this is so at t = 0. The domain Ω is then required to accom-
modate the following elliptic boundary-value problem which, per se, would be
overdetermined if the domain were independently prescribed a priori.

II. There exists a function ψ such that

(A) ψ ∈ C1(Ω) ∩ C2(Ω) and ∆ψ = 0 on Ω;
(B) ψ ≥ 0 on Ω and ψ = 0 on S;
(C) ψ(x, y) = ψ(x+ 2λ, y) = ψ(−x, y), (x, y) ∈ Ω;
(D) 1

2 |∇ψ|
2 + gy = 1

2Q
2 on S, where |∇ψ(0, 0)| = Q > 0;

(E) ∇ψ(x, y) → (0,−c) as y → −∞ uniformly for x ∈ R.

Note that ψ ∈ C1(Ω) means that the gradient of ψ has a continuous extension
to Ω and the limiting values are required to satisfy II(D). Of course, being
harmonic, ψ is a real-analytic function in the open set Ω. Note also that from
I(A)–(C) it follows that y ≤ 0 on S and hence, by II(D), |∇ψ| > 0 on S. This
observation enables one to prove in the next section that S is smoother than
merely C1; it is a real-analytic curve and the function ψ can be extended as a
harmonic function on an open neighbourhood of Ω. (This result is due to Lewy
[40].)

Once these results have been proved, further properties of Stokes waves follow
quickly using the Maximum Principle and the Hopf boundary-point lemma.

4. Regularity of the free surface

Let (x0, y0) ∈ S. Now S is a C1-curve and ψ ∈ C∞(Ω)∩C1(Ω) is harmonic in
Ω. Let φ be the harmonic conjugate of ψ in Ω, defined by integrating the Cauchy–
Riemann equations such that φ+ iψ is analytic in Ω, with φ(x0, y0) = 0. Then
φ ∈ C∞(Ω) ∩ C1(Ω). By a standard construction (see [21] and the references
therein) there is a disc B centred at (x0, y0) and functions φ̂, ψ̂ in C1(B) such
that φ̂ = φ and ψ̂ = ψ in B ∩ Ω, ψ̂ < 0 in B \ Ω and (φ̂, ψ̂)(x0, y0) = (0, 0).
Furthermore, since ∇ψ̂(x0, y0) is nonzero, by the inverse function theorem there
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is a disc D centred at the origin in R2 and a continuously differentiable function
F : D → B such that F (0, 0) = (x0, y0) and (φ̂(F (%, η)), ψ̂(F (%, η))) = (%, η) for
all (%, η) ∈ D. Let F (%, η) = (u(%, η), v(%, η)). Then (u(%, η), v(%, η)) ∈ Ω if and
only if η > 0 and (u(%, 0), v(%, 0)) is a parametrisation of S in a neighbourhood
of (x0, y0).

Let D̂ = {(%, η) ∈ D : η > 0}. Then (u+ iv)|
bD is the inverse of (φ+ iψ)|B∩Ω

and hence u and v are harmonic functions on D̂. Also

uη = −v% =
ψx

|∇ψ|2
and vη = u% =

ψy

|∇ψ|2
,

and u and v have C1-extensions onto η = 0 in D̂. Moreover, the boundary
condition II(D) implies that

1
2|∇v(%, 0)|2

+ gv(%, 0) =
1
2
Q2 when (%, 0) ∈ D̂.

If vη(0, 0) 6= 0 then

∂v

∂η
(%, 0) = A

(
v(%, 0),

∂v

∂%
(%, 0)

)
, (%, 0) ∈ D̂,

where A is an analytic function defined in a neighbourhood of (v(0, 0), v%(0, 0))
by

A(a, b) = ±
{

1
Q2 − 2ga

− b2
}1/2

.

(Note Q2 − 2v(0, 0) 6= v%(0, 0)−2 since vη(0, 0) 6= 0, and the choice of ± is
determined by the sign of vη(0, 0).) On the other hand, when vη(0, 0) = 0
(which occurs when the tangent to the free surface is vertical)

∂u

∂η
(%, 0) = A

(
v(%, 0),

∂u

∂%
(%, 0)

)
, (%, 0) ∈ D̂,

where now the real-analytic function A is defined in a neighbourhood of (v(0, 0),
vη(0, 0)).

The following theorem of Lewy [40] shows that there is a disc D̃ centred at
(0, 0) and a complex analytic function ũ+ iṽ defined on D̃ which coincides with

u + iv on D̂ ∩ D̃. Thus (u(%, 0), v(%, 0)) is a real-analytic function of % in an
open neighbourhood of 0. Since (u(%, 0), v(%, 0)) is a local parametrisation of S
in a neighbourhood of (x0, y0) it follows that S is a real-analytic curve. The
harmonic extension of φ, ψ across S may now be obtained by taking the inverse
of ũ+ iṽ in a neighbourhood of (x0, y0). It remains to state and prove the result
upon which all this depends.
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Theorem 1 (Lewy). Let D denote a half-disc {(x, y) : |x|2 + |y|2 < r2,
y > 0}. Suppose that F = U + iV is a complex analytic function on D such that
both U, V ∈ C1(D) and suppose that

Uy(x, 0) = A(U(x, 0), V (x, 0), Ux(x, 0)), |x| < r,

where A is a complex-valued analytic function of all its arguments in a neigh-
bourhood of (U(0, 0), V (0, 0), Ux(0, 0)) in C3 which is real when its arguments
are real. Then there exists a disc D̃ centred at (0, 0), and an analytic function
Ũ + iṼ : D̃ → C such that

U + iV = Ũ + iṼ on D ∩ D̃.

Proof. Let

U(0, 0) = α0, Uy(0, 0) + iUx(0, 0) = β0, iUx(0, 0) = γ0, iV (0, 0) = δ0

and let

F(α, β, γ, δ) = γ − β +A(α,−iδ,−iγ).

Then

F(α0, β0, γ0, δ0) = 0 and Real
∂F
∂γ

(α0, β0, γ0, δ0) = 1

since A is real when its argument is real. Therefore, by the implicit function
theorem, the equation F(α, β, γ, δ) = 0 may be solved to give γ uniquely in a
neighbourhood of γ0 in C as an analytic function of (α, β, δ) in a neighbourhood
of (α0, β0, δ0) in C3. Let us denote that functional dependence by

γ = Γ(α, β, δ) where γ0 = Γ(α0, β0, δ0).

Now use Γ to construct a complex-valued function W in a rectangle [−δ̂, δ̂]×
[0, δ̂], for some δ̂ > 0, as follows. First let W (0, y), with y ∈ [0, δ̂] for some δ̂ > 0
sufficiently small, be the solution of the initial-value problem

d

dy
(W (0, y)) = Γ(W (0, y), Fy(0, y), F (0, y)−W (0, y)),

W (0, 0) = U(0, 0),

where F (x, y) = U(x, y) + iV (x, y). Then let W (x, y) for x ∈ [−δ̂, δ̂] be given by
the solution of the initial-value problem (for fixed y ∈ [0, δ̂])

d

dx
(W (x, y)) = −iΓ(W (x, y), iFx(x, y), F (x, y)−W (x, y)).

It is clear, by the standard theory of initial-value problems, that this con-
struction defines a continuous function W on a closed rectangle [−δ̂, δ̂] × [0, δ̂]
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for some δ̂ > 0 sufficiently small. Now let ŷ = δ̂/2 and consider the complex
initial-value problem

dw

dz
= −iΓ(w(z), iF ′(z), F (z)− w(z)),

w(iŷ) = W (0, ŷ).

This equation is locally solvable. Also, restricted to the line x = 0 it coincides
with the equation for W (0, y) and restricted to a line y = c ∈ [0, δ̂] it coincides
with the equation for W (x, c). Hence w(x+ iy) is defined for −δ̂ < x < δ̂, 0 <
y < δ̂ and coincides with W there. Hence w has a continuous extension to the
line segment −δ̂ < x < δ̂, y = 0.

Now by hypothesis,

0 = A(U(x, 0),−i(F (x, 0)− U(x, 0)),−i(iUx(x, 0)))− iFx(x, 0) + iUx(x, 0),

and hence

iUx(x, 0) = Γ(U(x, 0), iFx(x, 0), F (x, 0)− U(x, 0)), x ∈ (−δ̂, δ̂),

for δ̂ > 0 sufficiently small. Since W (0, 0) = U(0, 0) it follows that

W (x, 0) = U(x, 0) for x ∈ (−δ̂, δ̂)

and, in particular, the continuous extension of the complex analytic function w

to the line {y = 0, x ∈ (−δ̂, δ̂)} is real and coincides with U on y = 0.
For (x, y) ∈ (−δ̂, δ̂)× (−δ̂, 0) let

F̃ (x+ iy) = 2w(x− iy)− F (x− iy).

Then F̃ is a complex analytic function on its domain of definition and it has a
continuous extension onto the line (−δ̂, δ̂)× {0}, namely

F̃ (x+ i0) = U(x, 0) + iV (x, 0).

By Morera’s theorem F̃ is the analytic continuation of F across the line y = 0,
and the proof is complete. �

5. Properties of Stokes waves

With the knowledge that S is real-analytic we may assume henceforth that
I(A)–(D) are satisfied by real-analytic functions X and Y and that ψ belongs
to C∞(Ω). The primary goal now is to show that X ′(t) 6= 0 for t ∈ R, and
Y ′(t) = 0 if, and only if, t = kλ, k ∈ Z, and hence that the free surface S is the
graph of a function. This result, which is due to Spielvogel [52], follows from the
fact that the pressure P is a subharmonic function. Here

P (x, y) = 1
2 |∇ψ(x, y)|2 + gy − 1

2Q
2, (x, y) ∈ Ω.
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Then P = 0 on S, by II(D), P ∈ C∞(Ω) by Lewy’s Theorem, and

∆P (x, y) = |∇ψx|2 + |∇ψy|2 ≥ 0 on Ω.

Since P (x, y) → −∞ as y → ∞ by II(E), the Maximum Principle gives that
P < 0 on Ω and

(1) (−Y ′(t), X ′(t)).∇P (X(t), Y (t)) = c(t) > 0, t ∈ R,

by the Hopf boundary-point lemma. Since P is zero on S,

(2) (X ′(t), Y ′(t)).∇P (X(t), Y (t)) = 0, t ∈ R,

and hence

(X ′(t)2 + Y ′(t)2)Px(X(t), Y (t)) = −c(t)Y ′(t), t ∈ R.

Moreover, ψ is harmonic,

(3) X ′(t)ψx(X(t), Y (t)) + Y ′(t)ψy(X(t), Y (t)) = 0, t ∈ R,

and hence

(4)
d

dt

(
1
2
ψ2

y(X(t), Y (t))
)

= ψy(X(t), Y (t)){ψxy(X(t), Y (t))X ′(t) + ψyy(X(t), Y (t))Y ′(t)}

= X ′(t){ψy(X(t), Y (t))ψxy(X(t), Y (t)) + ψx(X(t), Y (t))ψxx(X(t), Y (t))}

= X ′(t)
∂

∂x

(
1
2
|∇ψ|2

)∣∣∣∣
(X(t),Y (t))

= X ′(t)Px(X(t), Y (t))

=
−X ′(t)Y ′(t)c(t)
X ′(t)2 + Y ′(t)2

, t ∈ R,

where c > 0 is a real-analytic function.
Now I(A),(C) give Y ′(0) = 0 and X ′(0) > 0, and ψy(0, 0) = ψy(X(0), Y (0))

< 0 by the Hopf boundary-point lemma. Let (a, 0] be the maximal subinterval
of (−λ, 0] upon which X ′(t) > 0. Therefore, since Y ′(t) ≥ 0 on [−λ, 0] by I(C),
it follows from (4) that

ψ2
y(X(a), Y (a)) ≥ ψ2

y(X(0), Y (0)) > 0.

If a > −λ then X ′(a) = 0 and Y ′(a) 6= 0 because of the definition of a and
I(C). But (3) holds because ψ is constant on S. Evaluated at t = a this gives
a contradiction. We conclude that X ′(t) > 0 on (−λ, 0]. Since X ′(−λ) 6= 0
because Y ′(−λ) = 0, this shows X ′ 6= 0 on [−λ, 0]. That X ′(t) 6= 0 for all t ∈ R
is then immediate from I(A). Hence

(5) X ′(t) > 0, t ∈ R.
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Since ψ is harmonic and has its minimum on Ω at every point of S the Hopf
boundary-point lemma and the fact that X ′(t) > 0, t ∈ R, together give that

(6) ψy(X(t), Y (t)) < 0, t ∈ R.

Hence, by (3) and I(C),

(7) ψx(X(t), Y (t)) ≥ 0, t ∈ (−λ, 0).

Now let
Ωλ = {(x, y) ∈ Ω : −λ < x < 0}.

Then ψx is harmonic in Ωλ, ψx → 0 as y → −∞ and ψx ≥ 0 on ∂Ωλ by II(C).
Hence

(8) ψx > 0 on Ωλ.

Now suppose that ψx(X(t0), Y (t0)) = 0, t0 ∈ (−λ, 0). Then, by the Hopf
boundary-point lemma, ψxy(X(t0), Y (t0)) < 0. Note from (3) and (6) that
Y ′(t0) = 0 and hence from I(C) and (2) that

0 = Px(X(t0), Y (t0)) = ψy(X(t0), Y (t0))ψxy(X(t0), Y (t0)).

This is a contradiction. Hence

(9) ψx(X(t), Y (t)) > 0 and Y ′(t) > 0, t ∈ (−λ, 0).

From the regularity of the wave profile and the inequalities (5) and (9), there
results that the following version of the Stokes-wave problem is simpler than,
and equivalent to, the original.

S(a) There is a 2λ-periodic, real-analytic, even function h such that

h(x) < h(0) = 0 if x 6= 0 mod 2λ;

h′(x) > 0 for x ∈ (−λ, 0).

Thus |h(−λ)| is the amplitude of the wave. Let

S = {(x, h(x)) : x ∈ R} and Sλ = {(x, h(x)) : −λ < x < 0},
Ω = {(x, y) : y < h(x), x ∈ R} and Ωλ = {(x, y) ∈ Ω : −λ < x < 0}.

Then there exists a function ψ as follows:

S(b) ∆ψ = 0 in Ω;
S(c) ψ ∈ C∞(Ω);
S(d) ψ > 0 in Ω, ψ = 0 on ∂Ω;
S(e) ψ(−x, y) = ψ(x+ 2λ, y) = ψ(x, y), (x, y) ∈ Ω;
S(f) 1

2 |∇ψ(x, h(x))|2 + gh(x) = 1
2Q

2, x ∈ R, where Q = |∇ψ(0, 0)| > 0;
S(g) ∇ψ(x, y) → (0,−c) as y → −∞, uniformly for x ∈ R.
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We summarise established properties of the solution and infer some others.

(i) ψx > 0 in Ωλ ∪ Sλ, by (8) and (9);
(ii) ψy < 0 on Ω.

This is true on S by (6) and therefore on Ω by the Maximum Principle for the
harmonic function ψy on Ω (ψy → −c as y → −∞).

(iii)
0 < ψxx(±λ, y) = −ψyy(±λ, y), (±λ, y) ∈ Ω,

0 > ψxx(0, y) = −ψyy(0, y), (0, y) ∈ Ω,

by (i) and the Hopf boundary-point lemma. (Note that ψx(±λ, y) = ψx(0, y) = 0
if (±λ, y) or (0, y) ∈ Ω, by evenness and periodicity of ψ.)

(iv)

ψy(±λ, y) < −c, (±λ, y) ∈ Ω,

0 > ψy(0, y) > −c, (±λ, 0) ∈ Ω,

|ψy(0, 0)| = Q < c.

This is immediate from (ii), (iii) and S(g).

(v) The convergence of ∇ψ to (0,−c, ) is (uniformly in x) exponentially fast
as y → −∞.

To see this let A > 0 and define a harmonic function W on [−λ, 0] ×
(−∞, h(−λ)] by

W (x, y) = A sin(x/λ)ey/λ − ψx(x, y).

Choose A sufficiently large that

W (x, y) > 0 on (−λ, 0)× {h(−λ)}.

Since W (−λ, y) = 0 = W (0, y) for y < h(−λ), and W (x, y) → 0 as y → −∞
uniformly in x, the Maximum Principle gives

W (x, y) > 0 in (−λ, 0)× (−∞, h(−λ)).

Hence, by (i),

0 < ψx(x, y) < A sin(x/λ)ey/λ on (−λ, 0)× (−∞, h(−λ)).

Now it follows from classical elliptic estimates [25] that

|ψyy| = |ψxx| ≤ const ey/λ

as y → −∞, uniformly in x. Therefore, by S(g), (ψx, ψy) → (0,−c) (uniformly
in x) exponentially in y as y → −∞.

To interpret the next result, first note that the origin of Cartesian co-ordin-
ates has been specified uniquely (up to horizontal translations through the wave
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period) by being located at one of the wave crests. Note also that ψ has been
normalised so that ψ(0, 0) = 0.

(vi) There is a constant d such that

c

2g
(c2 −Q2) ≤ d < h(−λ)ψy(−λ, h(−λ)) = |h(−λ)| · |∇ψ(−λ, h(−λ))|

and ψ(x, y) + cy + d→ 0 as y → −∞ uniformly in x and exponentially
in y.

Since ψy(x, y) + c→ 0 and ψx(x, y) → 0 exponentially as y → −∞ it follows
that for some constant d, ψ(x, y) + cy + d→ 0 exponentially as y → −∞. Now
by (iii),

0 <
∫ h(−λ)

−∞
y
∂2

∂y2
(ψ(−λ, y) + cy + d) dy

= h(−λ)ψy(−λ, h(−λ))− d = |h(−λ)| · |∇ψ(−λ, h(−λ))| − d.

Let P = 1
2 |∇ψ|

2 + gy − 1
2Q

2 and for ε > 0 note that

∆
(
P +

(g − ε)ψ
c

)
≥ 0 in Ω,

P +
(g − ε)ψ

c
= 0 on ∂Ω

and

P (x, y) +
g − ε

c
ψ(x, y) → −∞ as y → −∞.

Hence, for each ε > 0, P + (g − ε)ψ/c < 0 on Ω and so

(10) P (x, y) +
gψ(x, y)

c
< 0 on Ω

and

(11) P (x, y) +
gψ(x, y)

c
= 0 on ∂Ω,

by the Maximum Principle. Hence, by (10) and (v),

1
2
(c2 −Q2)− gd

c
≤ 0,

which proves (vi).

(vii)
d

dx
(ψ2

y(x, h(x))) < 0, x ∈ (−λ, 0).

This is a re-iteration of (4) in the light of (5), (9) and S(a). Since ψy(x, h(x)),
which is the horizontal relative velocity field at the free surface, is negative, this
says that the relative horizontal speed of the flow at the free surface is decreasing



Stokes Waves 15

from the trough at −λ to the crest at 0. Note also that h′(x) > 0 on (−λ, 0)
gives

(viii)
d

dx
|∇ψ(x, h(x))| < 0, x ∈ (−λ, 0).

This is immediate from S(f) and S(a).

(ix)
d

dx

(
ψy(x, h(x))− g

c
h(x)

)
> 0.

This follows since, by (10), (11) and the Hopf boundary-point lemma,

Px(x, h(x)) +
g

c
ψx(x, h(x)) < 0, x ∈ (−λ, 0).

Therefore, by (4),

d

dx

(
1
2ψ

2
y(x, h(x))

)
= Px(x, h(x))

< −g
c
ψx(x, h(x)) =

g

c
ψy(x, h(x))h′(x).

Since ψy(x, h(x)) < 0 for x ∈ (−λ, 0), the result follows.
Since h(0) = 0 and ψy(0, 0) = −Q it now follows that

(12) ψy(x, h(x))− g

c
h(x) < −Q, x ∈ [−λ, 0).

(x) max
x∈R

|∇ψ(x, h(x))| ≤ 2c−Q.

Note first that by S(f),

max
x∈R

|∇ψ(x, h(x))| = |∇ψ(−λ, h(−λ))| = |ψy(−λ, h(−λ))|.

Also by S(f) and (12), for x ∈ (−λ, 0),

1
2 |ψy(x, h(x))|2 − 1

2Q
2 ≤ −gh(x) < −cQ− cψy(x, h(x)),

whence
1
2 |ψy(x, h(x))|2 − c|ψy(x, h(x))| < 1

2Q
2 − cQ.

Since Q < |ψy(x, h(x))|, an inspection of the graph of the quadratic 1
2Q

2 − cQ

yields that |ψy(x, h(x))| < 2c−Q. Hence |ψy(−λ, h(−λ))| < 2c−Q as required
and

(xi)
1
2g

(c2 −Q2) < |h(−λ)| < 2c
g

(c−Q).

The left-hand inequality follows from (iv) and S(f).

(xii) It is appropriate to anticipate the observation that the angle between
the free surface and the horizontal is bounded by 0.5434 radians. This is shown in
general in [1] and in our Section 11 for waves on a connected set which bifurcates
from the trivial flow. Also, we will see in Theorem 6(e), Section 8, that, for fixed
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λ, the possible speeds c of such waves are bounded above and below by a positive
constant proportional to

√
λ.

6. The hodograph transformation

We now turn to establishing the existence of solutions of the Stokes-wave
problem S(a)–(g). This involves a transformation of variables. Suppose that ψ
solves S(a)–(g) and that φ + iψ is analytic in Ω with φ(0, 0) = 0. Then, by the
Cauchy–Riemann equations, φ(±λ, y) is independent of y < h(−λ) and hence

φ(λ, y)− φ(−λ, y) =
∫ λ

−λ

φx(x, y) dy =
∫ λ

−λ

ψy(x, y) dy = −2λc,

by S(g). Since φ(0, y) is independent of y < 0, φ(0, y) = 0 for all y < 0. Let

Ω̃λ = {x+ iy : −λ < x < λ, y < h(x)}

and let f : Ω̃λ → C be given by

f(x+ iy) =
−π
λc

(φ(x, y) + iψ(x, y)).

(Here, and elsewhere where it is convenient to do so, we exercise the right to
identify points of the plane either by their Cartesian co-ordinates or as com-
plex numbers described in Cartesian or polar co-ordinates. With this conven-
tion, subscripts denote partial derivatives of real-valued functions with respect to
real co-ordinates of the independent variable in whatever co-ordinate system is
indicated by the notation.) Then f(Ω̃λ) = R, where

R = {%+ iη : −π < % < π, η < 0}.

Since φx = ψy < 0 on Ω̃λ, it is clear that f : Ω̃λ → R is a conformal bijection.
Let ξ : R→ Ω̃λ be the inverse of f and let

(τ̃ + iθ̃)(%+ iη) = log f ′(ξ(%+ iη)),

where the logarithm is defined on the complex plane cut along the negative real
axis. Then it follows easily that

eeτ (cos θ̃ + i sin θ̃)(%+ iη) =
−π
λc

(φx(ξ(%+ iη)) + iψx(ξ(%+ iη))),

whence

eeτ(%+iη) =
π

λc
|∇φ(ξ(%+ iη))| = π

λc
|∇ψ(ξ(%+ iη))|;

eeτ(%+iη) → π

λ
as η → −∞;

θ̃(iη) = θ̃(π ± iη) = 0, η < 0;

0 < θ̃(%) < π/2, 0 < % < π;

−θ̃(−%) = θ̃(%), 0 < % < π.
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It is important to note that tan θ̃(ξ(%)) = −h′(ξ(%)) for % ∈ (0, π) and so θ̃
is the acute angle (measured positive clockwise) between the free surface and the
horizontal direction (−1, 0) at the points ξ(%) ∈ S. The boundary condition S(f)
transforms as follows:

1
2
|∇ψ(ξ(%))|2 =

λ2c2

2π2
e2eτ(%)

and, by definition,
h(Real ξ(%)) = Imag ξ(%).

Hence, since f(ξ(%)) = %,

h(Real ξ(%)) = Imag
∫ %

0

ξ′(ν) dν

= Imag
∫ %

0

1
f ′(ξ(ν))

dν = −
∫ %

0

e−eτ(ν) sin θ̃(ν) dν.

Hence in the transformed variables, the nonlinear boundary condition S(f) be-
comes

λ2c2

2π2
e2eτ(%) − g

∫ %

0

e−eτ(ν) sin θ̃(ν) dν =
1
2
Q2,

where Q = λceeτ(0)/π. A differentiation with respect to % gives

λ2c2

π2
e2eτ(%)τ̃%(%)− ge−eτ(%) sin θ̃(%) = 0, % ∈ (−π, π),

and hence
1
3
λ2c2

π2g
e3eτ(%) =

1
3
πQ3

λcg
+

∫ %

0

sin θ̃(ν) dν.

A substitution in the previous expression now gives, since τ̃ + iθ̃ is analytic,

θ̃η(%+ i0) = τ̃%(%+ i0) =
gπ2

λ2c2
e−3eτ(%) sin θ̃(%)

=
sin θ̃(%)

3
{

πQ3

3λgc +
∫ %

0
sin θ̃(ν) dν

} .
This argument is reversible. So suppose that θ̃ ∈ C1(R)∩C2(R) is bounded

such that

∆θ̃ = 0 on R,

θ̃(%+ iη) = −θ̃(−%+ iη) on R,

θ̃(±π + iη) = 0, η < 0,

∂θ̃

∂η

∣∣∣∣
%+i0

=
1
3

sin θ̃(%)

β +
∫ %

0
sin θ̃(ν) dν

, % ∈ (−π, π),

for some β > 0. Then if λ and c are such that

(13)
{

3gλ
πc2

}1/3

=
1
π

∫ π

0

cos θ̃(%)

{β +
∫ %

0
sin θ̃(ν) dν}1/3

dν
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then there exists a Stokes wave of wavelength λ and speed c on a flow of infinite
depth, and the speed of the flow at the crest is given by

(14) Q =
(

3gλcβ
π

)1/3

.

It follows easily that the function θ̃ : R → R has a real-analytic extension
as a harmonic function on the lower half-plane H = {(%, η) : η < 0} which is
odd and 2π-periodic in the %-direction. (This follows because the extension by
reflection and periodicity is weakly harmonic and therefore classically harmonic
on the lower half-plane.)

For calculations later it is slightly more convenient to map R onto the unit
disc. In polar co-ordinates let

D = {reis : 0 ≤ r < 1, −π < s ≤ π}

and let
(τ + iθ)(reis) = −(τ̃ + iθ̃)(−s+ i log r), reis ∈ D.

Then

(N1) ∆θ = 0 in D;
(N2) θ ∈ C1(D) ∩ C∞(D) and θ(reis) = −θ(re−is);

(N3)
∂θ

∂r

∣∣∣∣
eis

=
sin θ(eis)

3(β +
∫ s

0
sin θ(eiν) dν)

, s ∈ (−π, π].

We mention again the need for a relaxed attitude to the independent variable.
At times it is convenient to regard θ(eis) simply as an odd function of s ∈ R
which is zero at π, and a switch to the notation θ(s), as in the next section, is
appropriate. However, later functions on S1 are extended as harmonic functions
on the unit disc, in which case θ(reis) is a better notation.

Note that, in terms of the conjugate operator C on the unit circle S1 ([10],
[64]),

C(θ)(eit)=
1
3

{
log

(
β+

∫ t

0

sin θ(eiν) dν
)
− 1

2π

∫ π

−π

log
(
β+

∫ t

0

sin θ(eiν) dν
)
dt

}
and hence

(N3′)
∂θ

∂r

∣∣∣∣
eis

=
α

3
e−3C(θ)(eis) sin θ(eis),

where

α = exp
{

1
2π

∫ π

−π

log
(
β +

∫ t

0

sin θ(eiν) dν
)
dt

}
.

The alternative (N3′) was the cornerstone of Krasovskĭı’s theory [38], which was
the first account of large amplitude Stokes waves and of Levi-Civita’s [39] theory
of small amplitude waves. But existence theory follows more easily from (N3)
which Keady and Norbury [31] used in their version of Stokes-wave existence
theory. What follows is a substantial refinement of that theory.
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7. Nekrasov’s integral equation

To reduce (N1)–(N3) to an integral equation consider the general Neumann
problem

∆u = 0, x ∈ D,(15)

lim
(r,s)→(1,s0)

∂

∂r
u(reis) = f(eis0), s ∈ (−π, π],(16)

where f ∈ C(S1) and f(eis) is an odd function of s. (Here f ∈ C(S1) means
that f is continuous on the unit circle.) Then it is classical (it follows from [64],
Ch. III, (6.13) and the Hopf boundary-point lemma) that (15) and (16) have a
unique solution u ∈ C∞(D) ∩ C(Ω), with u(reis) odd in s, and the solution is
given in closed form in the formula

u(reis) =
1
π

∫ π

−π

( ∞∑
k=1

rk sin ks sin kt
k

)
f(eit) dt,

where on S1 the formula

u(eis) =
1
π

∫ π

−π

( ∞∑
k=1

sin ks sin kt
k

)
f(eit) dt

is valid. For r ∈ [0, 1], let

Kr(s, t) =
1
π

∞∑
k=1

rk sin ks sin kt
k

.

Then

K1(s, t) =
1
2π

log
∣∣∣∣ sin 1

2 (s+ t)
sin 1

2 (s− t)

∣∣∣∣, (s, t) ∈ [−π, π]× [−π, π], s 6= t.

Then if f ∈ C(S1) and f(eis) is odd in s, and if

(17) u(reis) =
∫ π

−π

Kr(s, t)f(eit) dt, r ∈ [0, 1],

then u satisfies (15) and (16).
To find Stokes waves of all amplitudes it is therefore necessary and sufficient

to find a function θ : [−π, π] → R and β > 0 with the following properties:

θ is continuous and odd on [−π, π];(18)

θ(0) = θ(π) = 0;(19)

π/2 > θ(t) ≥ 0, t ∈ [0, π];(20)

θ(s) = 1
3TN (β, θ)(s),(21)
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where

N (β, θ)(t) =
sin θ(t)

β +
∫ t

0
sin θ(ν) dν

,

and

Tf(s) =
∫ π

−π

K1(s, t)f(t) dt

for odd, continuous functions f with f(0) = f(π) = 0. Note that if f ∈ L2(−π, π)
is odd and has Fourier sine coefficients {an} then the sine coefficients of Tf are
{an/n}. Thus T maps the space of odd functions in L2(−π, π) compactly into
the space of odd continuous functions on [−π, π] with the supremum norm. A
bootstrap argument then yields that every solution of (18)–(21) is a 2π-periodic,
odd, infinitely differentiable function and hence, by Lewy’s theorem and the
connection with Stokes waves, it is real-analytic. The Stokes-wave problem is
reduced to finding solutions of (18)–(21). Equation (21) is called Nekrasov’s
Integral Equation. Since similar nonlinear equations in continuum mechanics
are known to have exact periodic solutions [7], [58], it is intriguing to speculate
that Nekrasov’s equation might also have an exact solution, at least for some
values of β. (Note that if in Nekrasov’s equation the term 1/3 which multiplies
the right-hand side is replaced by 1, then the odd function which is (π − s)/2
on (0, π) is an exact solution of the altered equation with β = 0. See Lemma
5.) However, no exact solution of Nekrasov’s equation is known, and further
progress requires an existence theory. Happily a rather complete theory follows
using cones in Banach spaces and global bifurcation theory [20], [50].

8. Invariant cones

Let

X = {f : [−π, π] → R : f is continuous, odd, f(0) = f(π) = 0},

a Banach space with the supremum norm. Then T : X → X is a compact linear
operator, as was seen at the end of Section 7.

Let

K̂ = {f ∈ X : f ≥ 0 on [0, π]};
K̃ = {f ∈ K̂ : f(t)/sin(t/2) is nonincreasing on [0, π]};
K = {f ∈ K̃ : f(t) ≤ f(s) for all s ∈ [π − t, t], when t ∈ [π/2, π]}.

Each of these sets is a closed, convex cone in the Banach space X. The following
observations about elements of K will be useful in the sequel: for all f ∈ K,
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f is odd on (−π, π);(22)

f ≥ 0 on (0, π);(23)

f is nonincreasing on (π/2, π);(24)

f(t)/t is nonincreasing on (0, π).(25)

The following result is elementary.

Lemma 2. Every sequence in K̃ which is bounded in X is compact in
Lp(−π, π), 1 ≤ p <∞.

Proof. Let {un} ⊂ K̃ be bounded in X and let vn(t) = un(t)/sin(t/2).
Then vn is even and {vn|[a,π]} is a sequence of bounded monotone functions for
each a > 0. Therefore there is a subsequence {vnk

} which converges everywhere
on [a, π]. (See e.g. Helly’s Selection Theorem [56].) Now a diagonalisation argu-
ment gives a subsequence {unl

} of {un} which converges everywhere on [0, π].
Since {unl

} is bounded the required result follows from the Dominated Conver-
gence Theorem and the oddness of un. �

The goal is a proof that Nekrasov’s equation has solutions in K; a first step
is a proof that T : K → K. We use the Maximum Principle although a direct
proof based on the kernel K1 is also possible.

Let D+ = {reit : 0 < r < 1, 0 < t < π}, the open half-disc. If f ∈ X, then

(26) u(reis) = 2
∫ π

0

Kr(s, t)f(t) dt

defines a function which is harmonic in D+, continuous on D+, zero when t = 0
and π, and

(27) lim
(r,s)→(1,s0)

∂u

∂r
(reis) = f(s0), s0 ∈ [0, π].

Note also that

(28) Tf(s0) = lim
(r,s)→(1,s0)

u(reis).

Theorem 3. The operator T on X maps K̂ to K̂, K̃ to K̃ and K to K.

Proof. Let f ∈ K̂. By (28) it suffices to show that u ≥ 0 in D+, where u is
given by (26). If u < 0 at a point of D+, then u has a negative minimum at some
point eit, 0 < t < π, by the Maximum Principle. By the Hopf boundary-point
lemma (∂u/∂r)(eit0) < 0, which contradicts (27) since f(t0) ≥ 0. Thus Tf ≥ 0
on [0, π] and hence T : K̂ → K̂.

To show that T : K̃ → K̃ it suffices to show that Tf ∈ K̃ when f ∈ K̃ and
f is smooth. A simple approximation argument then completes the proof. So
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assume f ∈ K̃ ⊂ K̂ is smooth and let u be defined by (26). As already noted,
u ≥ 0 on D+, and hence

(29)
∂

∂t
u(reit)

∣∣∣∣
t=π

≤ 0, 0 < r ≤ 1.

Let w : D+ → R be defined by

w(reit) = 2 sin(t/2)ut(reit)− cos(t/2)u(reit).

Then w is smooth on D+,

wt(reit) = sin(t/2)
{

2utt(reit) +
1
2
u(reit)

}
and hence

(30) ∆w(reit)− 1
r2

cot(t/2)wt(reit)− 1
4r2

w(reit) = 0.

Also

(31) w(rei0) = 0 and w(reiπ) ≤ 0 by (29).

Now (30) is an elliptic equation which w satisfies and hence, by the Maximum
Principle applied to balls interior to D+, the maximum and minimum of w on
D+ are attained on the boundary of D+. By (31) the maximum is nonnegative.
Suppose it is positive. Then it is attained at eit0 , 0 < t0 < π, because of (31).
The Hopf boundary-point lemma then gives

0 <
∂w

∂r
(eit0) = 2 sin(t0/2)urt(eit0)− cos(t0/2)ur(eit0)(32)

= 2 sin(t0/2)f ′(t0)− cos(t0/2)f(t0),

by the smoothness of u and (27). Here prime denotes differentiation with respect
to t ∈ (0, π). However, for t ∈ (0, π), the fact that f ∈ K̃ gives

0 ≥ d

dt

{
f(t)

sin(t/2)

}
=

2 sin(t/2)f ′(t)− cos(t/2)f(t)
2 sin2(t/2)

.

This contradicts (32). Hence w ≤ 0 in D+ and, in particular,

2 sin(t/2)ut(eit)− cos(t/2)u(eit) ≤ 0.

Thus Tf ∈ K̃ when f ∈ K̃ is smooth, by (28), which is what we set out to prove.
Finally, suppose f ∈ K, let u be defined as previously and let wα be defined

on a segment Dα of the unit disc as follows:

wα(reit) = u(reit)− u(rei(2α−t)),

where π/2 < α < π and

Dα = {reit : 0 < r < 1, 2α− π < t < α}.
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Then wα is harmonic on Dα,

(33) wα(reαi) = 0

and, since f ∈ K̂,

(34) wα(re(2α−π)i) = u(re(2α−π)i) ≥ 0.

Since wα is continuous on Dα it follows that it attains its minimum on the
boundary. If the minimum is negative, then by (33) and (34) it must be attained
at a point eit0 with 2α − π < t0 < α, at which point ∂wα/∂r < 0, by the Hopf
boundary-point lemma. Therefore

0 >
∂wα

∂r
(eit0) =

∂u

∂r
(eit0)− ∂u

∂r
(ei(2α−t0)) = f(t0)− f(2α− t0).

However, since α ∈ (π/2, π), t0 ∈ [π − (2α− t0), 2α− t0] and 2α− t0 ∈ [π/2, π],
and therefore

f(t0)− f(2α− t0) ≥ 0

since f ∈ K. This is a contradiction and we conclude that wα ≥ 0 on Dα when
f ∈ K. Therefore for any α ∈ (π/2, π),

Tf(t)− Tf(2α− t) ≥ 0, 2α− π < t < α.

Hence Tf ∈ K if f ∈ K and the proof is complete. �

To complete the demonstration that Nekrasov’s equation can be dealt with
in the cone K let F : R → R be defined by

F (u) =


1 if u > π/2,

sinu if − π/2 < u < π/2,

−1 if u < −π/2,

and let N : (0,∞)× K̂ → K̂ be defined by

N(µ, u) =
µF (u(t))

1 + µ
∫ t

0
F (u(ν)) dν

, t ∈ [−π, π].

Since F is odd, it is clear that the denominator is an even function of t which is
nonnegative on [0, π] if u ∈ K̂. Thus N : (0,∞)× K̂ → K̂ as required. However,
even more is true.

Theorem 4. The operator N maps (0,∞)× K̃ into K̃ and (0,∞)×K into
K, and in both contexts it is continuous.
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Proof. To see that N : (0,∞)×K̃ → K̃ it suffices to show that N(µ, u) ∈ K̃
when u ∈ K̃ and u is smooth. In this case note that

d

dt

(
F (u(t))
sin(t/2)

)
=

2F ′(u(t))u′(t) sin(t/2)− F (u(t)) cos(t/2)
2 sin2(t/2)

=
F ′(u(t)){2u′(t) sin(t/2)− u(t) cos(t/2)}

2 sin2(t/2)

+
cos(t/2){u(t)F ′(u(t))− F (u(t))}

2 sin2(t/2)
≤ 0 for t ∈ (0, π)

since F is nondecreasing, F (u)/u is decreasing on (0,∞) and u ∈ K̃. Therefore
for µ > 0, and u ∈ K̃ smooth, and for 0 < s < t < π,

N(µ, u)(t)
sin(t/2)

− N(µ, u)(s)
sin(s/2)

=
µ

{1 + µ
∫ t

0
F (u(ν)) dν}

{
F (u(t))
sin(t/2)

− F (u(s))
sin(s/2)

}

+
µF (u(s))
sin(s/2)

{
1

1 + µ
∫ t

0
F (u(ν)) dν

− 1
1 + µ

∫ s

0
F (u(ν)) dν

}
≤ 0.

Therefore N(µ, u) ∈ K̃ when µ > 0 and u ∈ K̃.
Finally, to see that N : (0,∞) × K → K it suffices to note that 1 +

µ
∫ t

0
F (u(ν)) dν is a nondecreasing positive function of t when u ∈ K and µ > 0

and F is nondecreasing on (0,∞). Thus, for s ∈ [π − t, t] and t ∈ [π/2, π],

N(µ, u(t))−N(µ, u(s))

=
µ(F (u(t))− F (u(s)))

1 + µ
∫ t

0
F (u(ν)) dν

+ µF (u(s))
{

1

1 + µ
∫ t

0
F (u(ν)) dν

− 1
1 + µ

∫ s

0
F (u(ν)) dν

}
≤ 0 if u ∈ K.

Hence N : (0,∞)×K → K and the proof is complete. �

Now we need the result of an explicit calculation.

Lemma 5. ∫ π

0

K1(s, t) tan(t/2) dt = s/2, s ∈ (0, π),

and hence
1
3

∫ π

0

K1(s, t) cot(t/4) dt < π/3, s ∈ (0, π).
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Proof. For each k ∈ N it follows by Cauchy’s integral formula (and a lim-
iting argument) that for k ∈ N,

0 =
∫

S1
zk−1 log(1 + z) dz = i

∫ π

−π

eikt log(1 + eit) dt

= i

∫ π

−π

eikt{log(2 cos(t/2)) + it/2} dt.

Hence∫ π

−π

tan(t/2)
sin kt
k

dt =
∫ π

−π

2 log(2 cos(t/2)) cos kt dt =
∫ π

−π

t sin kt dt.

Thus ∫ π

0

K1(s, t) tan(t/2) dt = s/2, s ∈ (0, π),

and a change of variables gives∫ π

0

K1(s, t) cot(t/2) dt = (π − s)/2, s ∈ (0, π).

Since cot(t/4) ≤ 2(cot(t/2) + tan(t/2)) the result follows. �

Theorem 6. Suppose that (µ, θ) ∈ (0,∞) ×K, θ 6≡ 0 and θ = 1
3TN(µ, θ).

Then

(a) 0 < θ(t) < π/3 for all s ∈ (0, π);
(b) µ > 3;

(c)
1
µ

+
∫ s

0

sin θ(ν) dν ≥ γs, s ∈ [0, π],

where γ > 0 is independent of µ and θ;

(d) 0 <
∫ π

0

cos 3θ(t)
1
µ +

∫ t

0
sin θ(ν) dν

dt ≤ Γ,

where Γ is independent of µ and θ.

In particular, θ satisfies Nekrasov’s equation with β = 1/µ.

(e) The Stokes waves to which these solutions correspond have

0 < m ≤ gλ/c2 < M

for absolute constants m and M . (See (13).)

Proof. If θ ∈ K then F (θ) ∈ K by the preceding proof, and therefore∫ t

0

F (θ(ν)) dν =
∫ t

0

sin(ν/2){F (θ(ν))/sin(ν/2)} dν

≥ F (θ(t))
sin(t/2)

∫ t

0

sin(ν/2) dν = 2F (θ(t))
1− cos(t/2)

sin(t/2)
= 2F (θ(t)) tan(t/4).
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Hence for any µ > 0 and θ ∈ K,

(35) N(µ, θ) =
µF (θ(t))

1 + µ
∫ t

0
F (θ(ν)) dν

≤ 1
2

cot(t/4).

Hence, since the kernel K1 of the linear operator T is nonnegative on [0, π]×
[0, π] and odd in s and t separately,

θ(s) =
2
3

∫ π

0

K1(s, t)N(µ, θ)(t) dt

<
1
3

∫ π

0

K1(s, t) cot(t/4) dt (by (35))

<
π

3
, for s ∈ (0, π).

Also, if θ 6≡ 0, then N(µ, θ) ≥ 0 and the inequality is strict on a set of
positive measure. Hence θ > 0 on (0, π) since for s ∈ (0, π), K1(s, t) > 0 almost
everywhere θ > 0 on (0, π).

Since F (u) = sinu on [−π/3, π/3], it follows that (1/µ, θ) is a solution of
Nekrasov’s equation.

Now for s ∈ [0, π],

θ(s) =
2
3

∫ π

0

K1(s, t)
µ sin θ(t)

1 + µ
∫ t

0
sin θ(ν) dν

dt

≥ 2
3
· µ

1 + µ
∫ s

0
sin θ(ν) dν

∫ s

0

tK1(s, t)
sin θ(t)

t
dt

≥ 2
3
· µ sin θ(s)
1 + µ

∫ s

0
sin θ(ν) dν

∫ s

0

t

s
K1(s, t) dt,

since θ ∈ K ⊂ K̃.

Now for 0 < t < s < π,

1 ≥
sin

(
s−t
2

)
s−t
2

≥
sin

(
s+t
2

)
s+t
2

≥ sin s
s
.

Therefore
sin

(
s+t
2

)
sin

(
s−t
2

) ≥ sin s
s

· s+ t

s− t

and so

K1(s, t) ≥
1
2π

{
log

(
sin s
s

)
+ log

(
s+ t

s− t

)}
.
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Hence ∫ s

0

t

s
K1(s, t) dt ≥

s

4π
log

(
sin s
s

)
+

1
2π

∫ s

0

t

s
log

(
s+ t

s− t

)
dt

=
s

4π
log

(
sin s
s

)
+

s

2π

∫ 1

0

u log
(

1 + u

1− u

)
du

=
s

2π

{
1
2

log
(

sin s
s

)
+ 1

}
.

Since 0 ≤ θ < π/3, θ(s)/sin θ(s) ≤ 2π/3
√

3, and hence

2π2

√
3

(
1
µ

+
∫ s

0

sin θ(ν) dν
)
≥ s

(
1 +

1
2

log
(

sin s
s

))
.

Hence there is an interval [0, a], independent of (µ, θ), such that

2π2

√
3

(
1
µ

+
∫ s

0

sin θ(ν) dν
)
≥ 1

2
s, s ∈ [0, a].

Thus
1
µ

+
∫ s

0

sin θ(ν) dν ≥
√

3 a
4π3

s, s ∈ [0, π],

since sin θ ≥ 0 on [0, π].
Now suppose that τ + iθ is analytic on the unit disc and that τ has zero

mean on S1, i.e. −τ |S1 is the conjugate of θ|S1 . (It is important to distinguish
this τ from the one mentioned briefly at the end of Section 6. They differ by a
constant, as will be seen presently.) Then

−τt(eit) = θr(eit) =
sin θ(eit)

3(1/µ+
∫ t

0
sin θ(eiν) dν)

,

whence

τ(eit) = −1
3

log
(

1
µ

+
∫ t

0

sin θ(eiν) dν
)

+ a,

where

a =
1
6π

∫ π

−π

log
(

1
µ

+
∫ t

0

sin θ(eiν) dν
)

since τ |S1 has mean zero. Now (τ + iθ)(0) = 0 and so Cauchy’s integral formula
gives

1 =
1
2π

∫ π

−π

e3τ(eit) cos 3θ(eit) dt =
1
2π

∫ π

−π

e3a cos 3θ(eit)

1/µ+
∫ t

0
sin θ(eiν) dν

dt

=
α(θ, µ)
π

∫ π

0

cos 3θ(eit)

1/µ+
∫ t

0
sin θ(eiν) dν

dt,
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where, by part (c),

α(θ, µ) = exp
{

1
π

∫ π

0

log
(

1
µ

+
∫ t

0

sin θ(eiν) dν
)
dt

}
≥ exp

{
1
π

∫ π

0

log(γt) dt
}

= exp{log γ + log π − 1}.

The number on the right-hand side is independent of θ and µ. We have shown
that

0 <
∫ π

0

cos 3θ(eit)

1/µ+
∫ t

0
sin θ(eiν) dν

dt =
π

α(θ, µ)
≤ Γ

for some constant Γ independent of µ and θ, as required. An inspection of (13)
in the light of (a), (b) and (c) yields (e).

This completes the proof. �

9. Global existence theory

The purpose here is to describe how Rabinowitz’s global bifurcation theory
[50] as formulated for cones by Dancer [20] immediately leads to the existence
of solutions of Nekrasov’s equation. Without further ado, we state the result we
need in an abstract form due to Dancer.

Suppose that Y is a real Banach space and C ⊂ Y is a closed convex cone.
Suppose that

(i) A : [0,∞)× C → C is continuous and maps bounded sets to relatively
compact sets.

(ii) A(0, y) = A(λ, 0) = 0 for all λ ∈ [0,∞) and y ∈ K.
(iii) A(λ, y) = λBy+R(λ, y), where B : Y → Y is a compact linear operator

and ‖R(λ, y)‖/‖y‖ → 0 as ‖y‖ → 0, y ∈ C, uniformly for λ in compact
intervals of [0,∞].

(iv) B has an eigenvector y0 ∈ C \{0} corresponding to an eigenvalue λ0 > 0
of B which is at least as large as the modulus of any eigenvalue of B,
and B has no other eigenvalue with eigenvectors in C.

Let

S = {(λ, y) ∈ [0,∞)× C : A(λ, y) = y, y 6= 0} ∪ {(λ−1
0 , 0)}.

Theorem 7. If (i)–(iv) hold then the component C of S which contains
(λ−1

0 , 0) is unbounded in [0,∞)× Y . �

This result seems tailored for Nekrasov’s equation in the cone K defined in
Section 8. Let Y and C above be given by X and K of Section 8, and let

A(µ, θ) = 1
3TN(µ, θ), (µ, θ) ∈ [0,∞)×K,
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where T is defined at the end of Section 7. Finally, identify B here with 1
3T .

We have seen that T : X → X is compact (Section 7) and since N is clearly
bounded and continuous, (i) and (ii) are satisfied. It is obvious from the formula

Tf(t) =
1
3π

∫ π

−π

( ∞∑
k=1

sin ks sin kt
k

)
f(t) dt

that the eigenvalues of T are 1/(3k), k ∈ N, and that the corresponding eigen-
functions are sin kt. Since sin t ∈ K and sin kt 6∈ K for k > 1, the hypotheses
of the theorem are satisfied. Since, in the light of Theorem 6, every solution
(µ, θ) ∈ [0,∞)×K of A(µ, θ) = θ gives a solution of Nekrasov’s equation we can
deduce the following result. A continuum is a maximal closed connected set.

Theorem 8. There exists an unbounded continuum C in [0,∞)×K of so-
lutions of Nekrasov’s equation

θ(s) =
1
3

∫ π

−π

K1(s, t)
µ sin θ(t)

1 + µ
∫ t

0
sin θ(ν) dν

dt

such that the following hold.

(i) (µ, 0) ∈ C if and only if µ = 3.
(ii) If (µ, θ) ∈ C and θ 6= 0, then µ > 3 and 0 < θ(s) < π/3 on (0, π).
(iii) θ′(s) ≤ 0 for s ∈ [π/2, π].
(iv) θ(s)/s is nonincreasing on (0, π).

Proof. The existence of C is a direct corollary of the abstract theorem.
The estimate (ii) was established in the preceding section and (iii) and (iv) are
important corollaries of membership of K. �

10. The behaviour as µ → ∞

We have seen that for all µ > 3 there is a nonzero solution, θµ say, of
Nekrasov’s equation with 0 < θ < π/3. The question of the behaviour of these
solutions as µ → ∞ is of great interest. The following simple argument shows
that

(36) lim inf
µ→∞

‖θµ‖ ≥ π/6,

where ‖θ‖ = sup{|θ(t)| : t ∈ [0, π]} for θ ∈ X.
Let µl → ∞ as l → ∞ and let θl denote θµl

. Then by Lemma 2 we may
suppose, without loss of generality, that θl → θ∗ pointwise and in L2(−π, π). By
Theorem 6(c), θ∗ 6= 0. Now suppose that for some ε > 0, ‖θl‖ ≤ π/6−ε for all l.
Then Theorem 6(d) and Fatou’s lemma gives∣∣∣∣ ∫ π

0

cos 3θ∗(t)∫ t

0
sin θ∗(ν) dν

dt

∣∣∣∣ ≤ Γ <∞,

which is clearly false since |θ∗(t)| ≤ π/6−ε almost everywhere. This proves (36).
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Presently we shall give a proof of McLeod’s result [43] that

(37) ‖θµ‖ > π/6 for µ sufficiently large,

but before doing so we observe that in any case the function θ∗ satisfies the
limiting equation

(38) θ∗(s) =
1
3

∫ π

−π

K1(s, t)
sin θ∗(t)∫ t

0
sin θ∗(w) dw

dt,

where |θ∗(s)| ≤ π/3 and
∫ t

0
sin θ∗(w) dw ≥ γt, t ∈ (0, π). To see this, note that

for each l, ∣∣∣∣ sin θl(t)

1/µl +
∫ t

0
sin θl(w)dw

∣∣∣∣ ≤ 1
γt
,

by Theorem 6(c). Now for each s ∈ (0, π), K1(s, t) ≥ 0, is odd in t and∫ π

0

K1(s, t)
1
t
dt <∞

by Lemma 5. Hence θ∗ satisfies the limiting equation by the Dominated Con-
vergence Theorem. We shall return to the limiting equation later, but for now
we concentrate on obtaining (37).

Suppose that (µ, θµ) ∈ (3,∞)×K is a solution of Nekrasov’s integral equa-
tion. Note that θµ(t)/t is nonincreasing on [0, π], and even, because θµ ∈ K.
Let

θ̂µ(s) = θµ(s/µ) for all s ∈ [0, µπ].

Then θ̂µ(s)/s is even and nonincreasing for s ∈ [0, µπ]. If {µl} is an arbitrary
sequence with µl → ∞ we may (as in the proof of Lemma 2) extract a sub-
sequence such that θ̂µl

(s) converges pointwise on [0,∞) to a function θ̂, where
|θ̂(t)| ≤ π/3 for t ∈ [0,∞).

Now note that the equation for θ̂µ is

θ̂µ(s) =
2
3

∫ µπ

0

K1

(
s

µ
,
t

µ

)
sin θ̂µ(t)

1 +
∫ t

0
sin θ̂µ(w) dw

dt.

By Theorem 6(c), for t ∈ (0, π),

γt ≤ 1
µ

+
∫ t

0

sin θµ(w) dw =
1
µ

(
1 +

∫ µt

0

sin θ̂µ(w) dw
)
,

whence

(39) γt ≤ 1 +
∫ t

0

sin θ̂µ(w) dw, t ∈ (0, µπ).

Also, for s, t ∈ [0, µπ],

K1

(
s

µ
,
t

µ

)
=

2
π

log
∣∣∣∣ sin

(
s+t
2µ

)
sin

(
s−t
2µ

) ∣∣∣∣ ≤ 2
π

log
∣∣∣∣s+ t

s− t

∣∣∣∣,
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and for fixed s ∈ (0,∞),

(40)
1
π

∫ ∞

0

1
t

log
∣∣∣∣s+ t

s− t

∣∣∣∣ dt =
1
π

∫ ∞

0

1
t

log
∣∣∣∣1 + t

1− t

∣∣∣∣ dt =
π

2
.

Hence, by the Dominated Convergence Theorem, θ̂ : (0,∞) → R satisfies the
equation

(41) θ̂(s) =
2
3π

∫ ∞

0

log
∣∣∣∣s+ t

s− t

∣∣∣∣ sin θ̂(t)

1 +
∫ t

0
sin θ̂(w) dw

dt, s ∈ (0, π).

Since θµ(0) = 0 and the right-hand side of (41) is zero when s = 0, the limiting
function satisfies (41) on [0,∞). Since the right-hand side of (41) clearly defines
a continuous function on [0,∞), since 0 ≤ θ̂ ≤ π/3 on [0,∞), we conclude that
θ̂ is continuous on [0,∞). A bootstrap argument now gives that θ̂ is infinitely
differentiable. The following observations lead to a proof of (37).

Lemma 9. Suppose that ‖θµl
‖ ≤ π/6 for all l ∈ N. Then θ̂ has the following

properties:

(i) 1 +
∫ t

0
sin θ̂(w) dw ≥ γt, t ∈ (0,∞).

(ii)
∣∣∣∣∫ ∞

0

cos 3θ̂(t)

1 +
∫ t

0
sin θ̂(w) dw

dt

∣∣∣∣ <∞.

(iii) θ̂(t) → π/6 as t→∞.

Proof. Part (i) is immediate from (39) in the limit as µl → ∞. Since
0 ≤ θµl

≤ π/6 on [0, π], by assumption, it follows by Fatou’s lemma and Lemma
2 that

0 ≤
∫ ∞

0

cos 3θ̂(t)

1 +
∫ t

0
sin θ̂(w) dw

dt ≤ lim inf
l→∞

∫ µπ

0

cos 3θ̂µl
(t)

1 +
∫ t

0
sin θ̂µl

(w) dw
dt

= lim inf
l→∞

∫ π

0

cos 3θµl
(t)

1/µl +
∫ t

0
sin θµl

(w) dw
dt ≤ Γ,

by Theorem 6(d). Since the integrand is nonnegative, the result (ii) follows.
(iii) For 1 < s1 < s2 <∞,∫ s2

s1

cos 3θ̂(t)

1 +
∫ t

0
sin θ̂(w) dw

dt ≥
∫ s2

s1

cos 3θ̂(t)
2t

dt ≥
∫ s2

s1

1− 6θ̂(t)/π
2t

dt

(since cosx ≥ 1− 2x/π, x ∈ [0, π/2])

≥ 1
2

{
log

(
s2
s1

)
− 6
π
· θ̂(s1)
s1

(s2 − s1)
}

(since θ̂(s)/s is nonincreasing)

=
1
2

{
log

(
1 +

s2 − s1
s1

)
− 6
π
θ̂(s1)

s2 − s1
s1

}
.
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Now let α ∈ (0, π/6) and choose a > 0 and δ > 0 such that

log(1 + a) ≥ 6
π

(
π

6
− α

)
a+ δ.

It follows that if θ̂(s1) = π/6− α and s2 = s1(1 + a) then∫ s2

s1

cos 3θ̂(t)

1 +
∫ t

0
sin θ̂(w) dw

dt ≥ 1
2
δ.

Hence, for each α ∈ (0, π/6) the set {s : θ(s) = π/6−s} is bounded, for otherwise
the integral in (ii) would be infinite. Thus

lim sup
t→∞

θ̂(t) = lim inf
t→∞

θ̂(t) = lim
t→∞

θ̂(t).

Since the integral in (ii) is finite, θ̂(t) → π/6 as t→∞.
This completes the proof. �

The key step in McLeod’s proof of (37) is the following.

Lemma 10. Under the hypotheses of Lemma 9,

1 +
∫ t

0

sin θ̂(t) dt ≥ 1
2
t, t ∈ [0,∞).

Proof. Since (40) holds,

θ̂(s)− π

6
=

1
3π

∫ ∞

0

log
∣∣∣∣s+ t

s− t

∣∣∣∣{ sin θ̂(t)

1 +
∫ t

0
sin θ̂(ν) dν

− 1
t

}
dt

=
s

3π

∫ ∞

0

log
∣∣∣∣1 + w

1− w

∣∣∣∣{ sin θ̂(sw)

1 +
∫ sw

0
sin θ̂(ν) dν

− 1
sw

}
dw.

By Lemma 9(ii), (θ̂(s)− π/6)/s is integrable on [u,∞) for each u > 0 and so∫ ∞

u

θ̂(s)− π/6
s

ds

=
1
3π

∫ ∞

0

{
1
w

log
∣∣∣∣1 + w

1− w

∣∣∣∣ ∫ ∞

wu

(
sin θ̂(t)

1 +
∫ t

0
sin θ̂(ν) dν

− 1
t

)
dt

}
dw

=
−1
3π

∫ ∞

0

{
1
w

log
∣∣∣∣1 + w

1− w

∣∣∣∣ log
(

1 +
∫ wu

0
sin θ̂(ν) dν

1
2wu

)}
dw

(since sin θ̂(ν) → 1/2 as ν →∞)

= − 1
3π

∫ ∞

0

1
s

log
∣∣∣∣u+ s

u− s

∣∣∣∣ log
{

1 +
∫ s

0
sin θ̂(ν) dν
1
2s

}
ds.

To prove the result we suppose that, on the contrary, for some ŝ > 0 and
δ > 0,

1 +
∫

bs

0

sin θ̂(ν) dν ≤ 1
2
ŝ− δ.
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Then ŝ ≥ 2 and this inequality holds also for all s ≥ ŝ, since sin θ̂ ≤ 1/2 by
assumption. Hence

log
{

1 +
∫ s

0
sin θ̂(ν) dν
1
2s

}
≤ log

(
1− 2δ

s

)
≤ −2δ

s
, s ≥ ŝ.

Also for s ∈ (0, ŝ],

2
s
≤

1 +
∫ s

0
sin θ̂(ν) dν
1
2s

≤ 1 +
2
s
≤ s̃+ 2

s

and so ∣∣∣∣ log
{

1 +
∫ s

0
sin θ̂(ν) dν
1
2s

}∣∣∣∣ ≤ log(2 + s̃) + |log s|.

Therefore∫ ∞

u

θ̂(s)− π/6
s

ds = − 1
3π

∫
bs

0

1
s

log
∣∣∣∣s+ u

s− u

∣∣∣∣ log
{

1 +
∫ s

0
sin θ̂(ν) dν
1
2s

}
ds

− 1
3π

∫ ∞

bs

1
s

log
∣∣∣∣s+ u

s− u

∣∣∣∣ log
{

1 +
∫ s

0
sin θ̂(ν) dν
1
2s

}
ds

≥ − 1
3π

∫
bs

0

1
s

log
∣∣∣∣s+ u

s− u

∣∣∣∣{|log s|+ log(2 + s̃)} ds

+
2δ
3π

∫ ∞

bs

1
s2

log
∣∣∣∣s+ u

s− u

∣∣∣∣ ds
≥ − 1

3π

∫
bs

0

1
s

log
(

1 +
2s/u

1− s/u

)
{|log s|+ log(2 + s̃)} ds

+
2δ
3π

∫ u/3

bs

1
s2

log
∣∣∣∣s+ u

s− u

∣∣∣∣ ds if u ≥ 3ŝ.

Clearly the first term on the right-hand side is O(1/u) as u→∞. However, for
u ≥ 3ŝ, ∫ u/3

bs

1
s2

log
∣∣∣∣s+ u

s− u

∣∣∣∣ ds =
1
u

∫ 1/3

bs/u

1
t2

log
(

1 +
2t

1− t

)
dt

≥ 2 log 2
u

∫ 1/3

bs/u

dt

t
≥ const

log u
u

as u→∞ for some positive constant. Therefore∫ ∞

u

θ̂(s)− π/6
s

ds > 0

for u sufficiently large. Since θ̂ ≤ π/6, this is false, and the required result has
been established. �
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For θ in the interval [0, π/6],

1
2
− sin θ ≥ 1

2
(π/6− θ) ≥ 0

and hence the preceding result has as a corollary that under its hypotheses

(42)
∫ ∞

0

(π/6− θ̂(s)) ds ≤ 2
∫ ∞

0

(1/2− sin θ̂(s)) ds ≤ 2.

Theorem 11 [McLeod]. For µ sufficiently large, ‖θµ‖ > π/6.

Proof. If this is false, then there exists a sequence satisfying the hypotheses
of Lemmas 9 and 10. For α ∈ (−1, 0), (42) ensures that∫ ∞

0

θ̂(s)− π/6
s1+α

ds

is finite and converges to a finite limit as α→ 0, by the Dominated Convergence
Theorem. But, by (41),∫ ∞

0

θ̂(s)− π/6
s1+α

ds

=
1
3π

∫ ∞

0

( ∫ ∞

0

1
s1+α

log
∣∣∣∣s+ t

s− t

∣∣∣∣ ds)(
sin θ̂(t)

1 +
∫ t

0
sin θ̂(ν) dν

− 1
t

)
dt

=
1
3

tan
(
πα

2

) ∫ ∞

0

1
t1+α

log
(

1 +
∫ t

0
sin θ̂(ν) dν
t/2

)
dt,

where we have used the fact that∫ ∞

0

1
w1+α

log
∣∣∣∣1 + w

1− w

∣∣∣∣dw =
π

α
tan

(
πα

2

)
and integrated by parts. As α → −1, tan(πα/2) → −∞. Since the left-hand
side is bounded we conclude that∫ ∞

0

1
t1+α

log
(

1 +
∫ t

0
sin θ̂(ν) dν
t/2

)
dt→ 0.

But this is false since the integrand is nonnegative and does not converge point-
wise to zero as α→ 0. This contradiction proves the required result. �

11. A priori bounds on the slope of Stokes waves

This section is an account of Amick’s results on the maximum norm ‖θ‖ when
(µ, θ) ∈ C, the continuum of solutions of Nekrasov’s equation in R × K whose
existence has been established. These bounds are easier to obtain for elements
of a continuum in R × K which contains the bifurcation point (3, 0) than for
the general solutions in R× K̂ which his paper treats. (It is an interesting open
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question whether there are solutions in R × K̂ which do not lie in C.) When
combined with McLeod’s result, Amick’s estimates yield that

(43) π/6 < sup{‖θ‖ : (µ, θ) ∈ C} < (1.037)π/6.

(It is remarkable how close is (43) to the numerically calculated upper bound of
1.012π/6, calculated by Longuet-Higgins and Fox [42].) The proof of the right-
hand inequality which follows is a simple application of the Maximum Principle
and the Hopf boundary-point lemma to a very cleverly devised harmonic func-
tion on the disc. Here we give a complete proof, for elements of C, of (43) using
Amick’s choice of harmonic function. (Amick’s paper goes some way to explain-
ing the reasoning and limitations governing this choice of harmonic function.)

Suppose that (µ, θ) ∈ C and let θ(reit), 0 ≤ r < 1, −π < t ≤ π, be the
harmonic extension of θ to the unit disc. Let τ be the function defined in
Section 8 such that τ + iθ is analytic on the unit disc and τ has zero mean on
the unit circle. Then (see Section 8)

(44) −τt(eit) = θr(eit) =
sin θ(eit)

3(1/µ+
∫ t

0
sin θ(eiν) dν)

and

(45) τ(eit) = a− 1
3

log
(

1
µ

+
∫ t

0

sin θ(eiν) dν
)
,

where

(46) a =
1
3π

∫ π

0

log
(

1
µ

+
∫ t

0

sin θ(eiν) dν
)
dt.

Let f be the analytic function on the unit disc defined by

f = τ + iθ − a,

and for α > 4 and A ∈ (0, 1) (to be chosen later) let V (µ, θ) be the harmonic
function defined on the unit disc by

(47) V (µ, θ)(z) = − Imag
{
e−αf(z)

(
zf ′(z) +

Ae3f(z)

3(3− α)

)}
,

where f ′ is the complex derivative of f . For φ ∈ (0, π/α) let F : [0, π/α] → R be
given by

(48) F (φ) = cos(αφ) +
A sin((3− α)φ)

(3− α) sinφ
.

Since zf ′(z) = θt + irθr, V (µ, θ) is defined in the unit disc by

V (µ, θ) = eα(a−τ)

[
θt sin(αθ)− rθr cos(αθ)− Ae3(τ−a) sin((3− α)θ)

3(3− α)

]
.
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On S1, θr = (e3(τ−a) sin θ)/3 if (µ, θ) ∈ C and hence

V (µ, θ)(eit) = eα(a−τ)

[
θt sin(αθ)− θr

(
cos(αθ) +

A sin((3− α)θ)
(3− α) sin θ

)]∣∣∣∣
eit

(49)

= eα(a−τ)[θt sin(αθ)− θrF (θ)]|eit , −π < t ≤ π.

Note that F (0) > 0 and F (π/α) < 0 since α > 4 and A ∈ (0, 1). Let φ∗ denote
the smallest zero of F in (0, π/α).

Theorem 12 (Amick). If V (µ, θ)(eit) < 0 for t ∈ (0, π), then ‖θ‖ < φ∗.
In particular, if V (µ, θ)(eit) < 0 for t ∈ (0, π) when A = 0.96626 and α = 4.8,
then ‖θ‖ < 0.5434.

Proof. Suppose that the hypotheses hold and that ‖θ‖ > φ∗. Since θ(ei0) =
0, there is a smallest value of t0 ∈ [0, π] at which θ(eit0) = φ∗. Since V (µ, θ)(eit)
< 0 on (0, π) we conclude from (44) and (49) that θt sin(αθ) < 0 at eit0 . It
follows that sin(αθ(eit0)) < 0 and αθ(eit0) > π. But αθ(eit0) = αφ∗ < π.
This contradiction proves the general case. The particular case follows from a
calculation of the roots of F . �

Note that V (·, ·)(·) is a continuous function on C × S1, since convergence
of (µn, θn) ∈ C to (µ, θ) ∈ C in R × X implies uniform convergence of all the
derivatives of θn to the corresponding derivative of θ, because of the regularising
properties of the operator in Nekrasov’s equation.

It remains to prove that for all (µ, θ) ∈ C, V (µ, θ) < 0 at every point eit on
the unit circle with 0 < t < π when α = 4.8 and A = 0.96626. This is done by a
continuation argument using the Maximum Principle. Let

T = {(µ, θ) ∈ C \ {(3, 0)} : V (µ, θ)(eit) < 0, t ∈ (0, π)}.

Our purpose is to show that T is nonempty and both open and closed in
C \ {(3, 0)}. This will prove that T = C \ {(3, 0)} and the a priori bounds
follow by Amick’s theorem.

First observe that T is not empty because there is a neighbourhood N of
(3, 0) in R × X such that N ∩ (C \ {(3, 0)}) ⊂ T . It suffices to note that for
‖θ‖+ |3− µ| sufficiently small and (µ, θ) ∈ C,

[θt sin(αθ)− θr cos(αθ)]|eit < 0, t ∈ (0, π),

by (44), since ‖θt‖∞ → 0 as ‖θ‖ → 0 for solutions of Nekrasov’s equation. That
(µ, θ) ∈ T when (µ, θ) ∈ (C \ {(3, 0)}) ∩N is now immediate by (49).

To show that T is open and closed in C \ {(3, 0)}, let H : [0, π/α) → R be
defined by

H(φ) = f(φ) +Ag(φ) +A2h(φ),
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where, with A and α given above,

f(φ) = α− 3 +
1

tan(αφ)

{
1

tanφ
− α

tan(αφ)

}
;

g(φ) =
(3− α) cos((3 + α)φ) + (cotφ− 2α cot(αφ)) sin((3− α)φ)

(3− α) sin(αφ) sinφ
;

h(φ) =
(

sin((3− α)φ)
(3− α) sinφ

)2

{−3− α cot2(αφ) + (3− α) cot(αφ) cot((3− α)φ)}.

It is readily shown, by numerical calculation or symbol manipulation algebra,
that

H(φ) < 0, φ ∈ [0, π/α).

Remark. It is not true that with A = 0.966 the same function H is negative.
In fact, H(0.513) > 0 for that choice of A, contrary to what is suggested in [1].
This makes no material difference to the estimate obtained. It may be worth
while offering reassurance that the 3 + α term in the expression for g is not a
misprint for 3− α.

Lemma 13. T is closed in C \ {(3, 0)}.

Proof. Let (µn, θn) ∈ C and (µn, θn) → (µ, θ) ∈ C \ {(3, 0)} as n → ∞.
Then 0 < θ ≤ π/α and V (µ, θ)(eit) ≤ 0 on (0, π). It will suffice to show that
V (µ, θ)(eit) < 0 for t ∈ (0, π); that 0 < θ < π/α then follows from Theorem 12.
Suppose that this is false and that for s ∈ (0, π), V (µ, θ)(eis) = 0.

Observe that for 0 ≤ r < 1,

V (µ, θ)(rei0) = 0 = V (µ, θ)(reiπ),

and therefore, by the Maximum Principle, V (µ, θ) < 0 in the upper half-disc
D+ = {reit : 0 < r < 1, 0 < t < π} and hence V (µ, θ) has a maximum on D+

at eis. At this point the Hopf boundary-point lemma gives that the outward
normal derivative of V (µ, θ) is strictly positive and the tangential derivative of
V (µ, θ) on the unit circle at eis is zero. Therefore, since V (µ, θ)(eis) = 0,

0 <
∂

∂r
V (µ, θ)(eis)(50)

= eα(a−τ)

[
θrt sin(αθ) + αθr{θt cos(αθ) + θr sin(αθ)}

+ θtt cos(αθ)− 3Aθr

sin θ

(
θt sin((3− α)θ)

3− α
+
θr cos((3− α)θ)

3

)]∣∣∣∣
eis

where we have used the Cauchy–Riemann equations and the identity

θr(eit) = 1
3e

3(τ(eit)−a) sin θ(eit)
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to eliminate e3(τ−a). Differentiation of this identity at t = s gives

(51) θrt(eis) = {cot(θ)θrθt − 3θ2r}|eis .

Also since (∂/∂t)V (µ, θ)|eis = 0 and V (µ, θ)(eis) = 0, we find that at eis,

θtt = −
{
αθ2t cot(αθ)− θrt

(
cot(αθ) +

A sin((3− α)θ)
(3− α) sin(αθ) sin θ

)
(52)

+ θrθt

(
α− A cos((3− α)θ)

sin θ sin(αθ)
+
A sin((3− α)θ) cos θ
(3− α) sin2 θ sin(αθ)

)}
.

Furthermore, observe that because V (µ, θ)(eis) = 0,

θt(eis) =
{

cot(αθ) +
A sin((3− α)θ)

(3− α) sin θ sin(αθ)

}
θr

∣∣∣∣
eis

(53)

= Γθr(eis), say.

The equations (51)–(53) enable all derivatives in (50), except θ2r , to be eliminated
to yield

0 < eα(a−τ)θ2r

{
sin(αθ)[Γ cot θ − 3] + α[Γ cos(αθ) + sin(αθ)](54)

− cos(αθ)
[
Γ2(α cot(αθ)− cot θ) + 3Γ

+ Γ
(
α− A cos((3− α)θ)

sin θ sin(αθ)
+
A sin((3− α)θ) cos θ
(3− α) sin2 θ sin(αθ)

)]
− 3A

sin θ

[
Γ sin((3− α)θ)

3− α
+

cos((3− α)θ)
3

]}∣∣∣∣
eis

.

However, a very long though elementary trigonometric calculation yields that
the right-hand side of (54) is

(55)
(
eα(a−τ) θ2r

sin(αθ)

)∣∣∣∣
eis

H(θ(eis)) < 0

because of the choice of A and α. This contradiction completes the proof that
T is closed in C \ {(3, 0)}. �

Lemma 14. T is open in C \ {(3, 0)}.

Proof. Note first that if (µ, θ) ∈ C \ {(3, 0)} then θ ∈ K and hence θt(eit)
≤ 0 for t ∈ [π/2, π]. Hence V (µ, θ)(eit) < 0 for t ∈ [π/2, π) for all (µ, θ)
∈ C \ {(3, 0)}.

Now suppose that T is not open in C \ {(3, 0)}. Then there exists a sequence
{(µn, θn)} ⊂ C \ T such that (µn, θn) → (µ, θ) ∈ T in R × X as n → ∞. Let
tn ∈ (0, π/2) be such that

0 < V (µn, θn)(eitn) = max{V (µn, θn)(eit) : t ∈ [0, π]}
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and, without loss of generality, suppose that tn → t ∈ [0, π/2] as n → ∞. If
t ∈ (0, π/2], then V (µ, θ)(eit) = 0, which is impossible since (µ, θ) ∈ C. Hence
tn → 0 as n→∞.

Since V (µn, θn) is harmonic in the upper half-disc, it follows that

∂

∂t
V (µn, θn)

∣∣∣∣
eitn

= 0 and
∂

∂r
V (µn, θn)

∣∣∣∣
eitn

> 0

and

(56) (θn)t(eitn) = ((εn + 1)Γn)(θn)r(eitn),

where εn > 0 and

Γn =
{

cot(αθn) +
A sin((3− α)θn)

(3− α) sin θn sin(αθn)

}∣∣∣∣
eitn

,

as in (53). To see that εn → 0 note from (44) and (56) that, since tn → 0 and
µn → µ > 3,

1
1 + εn

=
Γn(θn)r

(θn)t
(eitn) → µ(A+ 1)/(3αθt(ei0)).

Since (µ, θ) ∈ T , V (µ, θ)(eit) < 0 for t ∈ (0, π) and hence, with Γ defined in (53),

1 <
Γθr

θt
(eit) → µ(A+ 1)/(3αθt(ei0)).

Hence µ(1 + A)/(3αθt(ei0)) = 1 and εn → 0 as n → ∞. Now (54) holds with
Γ, θ and s replaced by (1 + εn)Γn, θn and tn. Since

Γn ≤
const.

sin(αθn(eitn))
and εn → 0,

it follows from a careful inspection of (54) and (55) that H(0) =
limn→∞H(θ(eitn)) ≥ 0 for all n sufficiently large.

However, H(0) < 0. This contradiction shows that T is open in C \{(3, 0)}.�

12. The wave of greatest height

In the mathematical formulation of the Stokes-wave problem (Section 2) it
is required by II(D) that |∇ψ(0, 0)| 6= 0. In other words, the relative velocity at
a crest of the wave is nonzero. This led to the conclusion that the free surface is
the graph of a real-analytic function (Section 4) and the re-formulation S(a)–(g)
in Section 5. In the context of Nekrasov’s equation, (14) means that solutions
with β = 1/µ > 0 correspond to such smooth solutions of the Stokes-wave
problem. However, in Section 10 it is shown that there exists a solution θ∗ of
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(38), Nekrasov’s equation with 1/µ = 0, which arises as the pointwise limit of
solutions of Nekrasov’s equation with µ→∞. In particular,

0 < θ∗(s) ≤ 0.5434, s ∈ (0, π),(57) ∫ t

0

sin θ∗(ν) dν > γt,(58)

θ∗(t)/t is decreasing on (0, π).(59)

These are all consequences of the fact that θ∗ is the limit of a sequence θµn
,

where (µn, θµn
) ∈ C.

Such a solution of Nekrasov’s equation, which as we will see cannot be con-
tinuous on [0, π] and zero at zero, corresponds to a solution of S(a)–(g) with
|∇ψ(0, 0)| = 0. In hydrodynamic terminology there is a stagnation point at
the wave crest. In a celebrated paper, Stokes [54] conjectured that waves with
stagnation points at their crests exist, but that at the crest the wave profile has
a corner containing an angle of 2π/3. Here we give the proof [3] of this Stokes
conjecture by proving that if θ∗ is the function which satisfies (38) and arises as
the pointwise limit of θµn , where (µn, θn) ∈ C and µn →∞, then

(60) lim
s↘0

θ∗(s) = π/6.

The proof is by contradiction, and is reduced to a uniqueness question by the
following lemma.

Lemma 15. Suppose that

(61) θ∗(s) =
2
3

∫ π

0

K1(s, t)
sin θ∗(t)∫ t

0
sin θ∗(w) dw

dt, s ∈ (0, π),

θ∗ satisfies (57)–(59) and there exists a sequence αn ↘ 0 such that θ∗(αn) → a.
Then there exists a solution φ of the equation

(62) φ(x) =
1
3π

∫ ∞

0

log
(
x+ y

|x− y|

)
sinφ(y)∫ y

0
sinφ(w) dw

dy, x ∈ (0,∞),

with φ continuous, φ(x)/x nonincreasing, 0 < φ(x) ≤ 0.5434 on (0,∞) and
φ(1) = a.

Proof. For each n, let

φn(x) = φ∗(αnx), x ∈ (0, π/αn).

Then

φn(x) =
1
3π

∫ π/αn

0

log
(

sin αn

2 (x+ y)
| sin αn

2 (x− y)|

)
sinφn(y)∫ y

0
sinφn(w) dw

dy,

and
∫ y

0
sinφn(w) dw ≥ γy, y ∈ (0, π/αn). Moreover, by (59) and Helly’s Selection

Theorem [56], there is no loss of generality in assuming that φn(x) → φ(x)
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everywhere on (0,∞) as n→∞. A repeat of the argument for (41) now gives that
φ satisfies (62) for all x ∈ (0,∞). Since

∫ y

0
sinφ(w) dw ≥ γy, and the integrand

is nonnegative and nonzero, the right-hand side of (60) defines a continuous
positive function on (0,∞),

a = lim
n→∞

θ∗(αn) = lim
n→∞

φn(1) = φ(1).

That φ(x)/x is nonincreasing on (0,∞) is a consequence of the same property
of φn on (0, π/αn) for each n. This completes the proof. �

The proof of (60) therefore follows from a proof of the uniqueness theorem
which says that the only solution of (62) is θ ≡ π/6 (see (40)).

Suppose henceforth that

φ : (0,∞) → R is continuous and satisfies (62),(63)

0 < φ(x) ≤ 0.5434, x ∈ (0,∞),(64)

φ(x)/x is a nonincreasing function of x ∈ (0,∞).(65)

Lemma 16. ∫ x

0

sinφ(y) dy ≥ x/10, x ∈ (0,∞).

Proof. By (63) and (65), for x > 0,

φ(x) ≥ 1
3π

∫ x

0
sinφ(w) dw

∫ x

0

y log
(
x+ y

x− y

)
sinφ(y)

y
dy

≥ sinφ(x)
3π

∫ x

0
sinφ(w) dw

∫ x

0

y

x
log

(
x+ y

x− y

)
dy

=
x sinφ(x)

3π
∫ x

0
sinφ(w) dw

∫ 1

0

u log
(

1 + u

1− u

)
du =

x sinφ(x)
3π

∫ π

0
sinφ(w) dw

.

Hence
1
x

∫ x

0

sinφ(y) dy ≥ 0.1

since φ ≤ 0.5434 and (sin θ)/θ is a decreasing function of θ ∈ (0, 0.5434). �

Let

(66) p = sup
x∈(0,∞)

1
x

∣∣∣∣ ∫ x

0

(φ(y)− π/6) dy
∣∣∣∣ and m = sup

x∈(0,∞)

{φ(x)− π/6},

and note that by Jensen’s inequality

(67)
1
x

∫ x

0

sinφ(y) dy ≤ sin
(

1
x

∫ x

0

φ(y) dy
)
≤ sin(π/6 + p), x ∈ (0,∞),
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and since 0 < φ < 0.5434,

1
x

∫ x

0

sinφ(y) dy ≥ sin(π/6 +m)
π/6 +m

· 1
x

∫ x

0

φ(y) dy(68)

≥ sin(π/6 +m)
π/6 +m

(π/6− p) ≥ 0.95(π/6− p).

Let

(69) J = inf
x∈(0,∞)

1
x

∫ x

0

sinφ(w) dw and K = sup
x∈(0,∞)

∫ x

0

sinφ(w) dw.

Lemma 17.

(i) p ≤ 2
3π

log(1 +
√

2) log
(
K

J

)
;

(ii) p ≤ 0.00304.

Proof. By (40),∫ x

0

(φ(z)− π/6) dz =
1
3

∫ ∞

0

q(x, y)
d

dy

{
log

(
J

y

) ∫ y

0

sinφ(w) dw
}
dy,

where

q(x, y) =
1
π

{
x log

(
x+ y

|x− y|

)
+ y log

(
|x2 − y2|

y2

)}
and

qy(x, y) =
1
π

log
(
|x2 − y2|

y2

)
.

Now for x ∈ (0,∞), q(x, y) = O(y log y) as y → 0 and q(x, y) = O(1/y) as
y →∞. Also, by definition of J ,

log
(
J

y

) ∫ y

0

sinφ(w) dw ≤ 0,

and since (x −
√

2y)qy(x, y) > 0 for y ∈ (0,∞) \ {x}, we find, upon integrating
by parts, that∫ x

0

(φ(z)− π/6) dz ≥ −1
3

∫ x/
√

2

0

qy(x, y) log
(
K

J

)
dy

= −1
3
q

(
x,

x√
2

)
log

(
K

J

)
= −2x

3π
log(1 +

√
2) log

(
K

J

)
.

A similar integration on (x/
√

2,∞) gives∫ x

0

(φ(z)− π/6) dz ≤ 2x
3π

log(1 +
√

2) log
(
K

J

)
.

Therefore, by Lemma 16 and (67),

p ≤ 2
3π

log(1 +
√

2) log(10 sin(π/6 + p)).
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Since p ≤ π/6 it follows that p ≤ 0.387. Also, by (67) and (68),

p ≤ 2
3π

log(1 +
√

2) log
(

20
19
· sin(π/6 + p)

π/6− p

)
.

In the range (0, π/6), equality holds in this inequality twice, at p = 0.00304
and p = 0.44209. Since the right-hand side is positive at 0 we conclude that
p ≤ 0.00304. �

Since 0.00304 radians represents 0.17◦, this simple estimate brings us tanta-
lisingly close to the goal that p = 0. To close the gap we exploit the natural con-
nection between equation (62) and another equation which involves the Hilbert
transform. As was observed previously,

φ(x)− π

6
=

1
3π

∫ ∞

0

log
(
x+ y

|x− y|

)
d

dy

{
log

(
1
y

∫ y

0

sinφ(w) dw
)}

dy(70)

= − 1
3π
P

∫ ∞

0

(
1

y + x
− 1
y − x

)
log

(
1
y

∫ y

0

sinφ(w) dw
)
dy

=
1
3π

∫ ∞

0

1
y

log
{
|x− y|
x+ y

·
∫ x+y

0
sinφ(w) dw∫ |x−y|

0
sinφ(w) dw

}
dy

=
1
3π

∫ ∞

0

1
u

log
{
|1− u|
1 + u

·
∫ x(1+u)

0
sinφ(w) dw∫ x|1−u|

0
sinφ(w) dw

}
du,

=
1
3π

∫ ∞

0

1
u

log
{
|1− u|
1 + u

(
1 +

∫ x(1+u)

x|1−u| sinφ(w) dw∫ x|1−u|
0

sinφ(w) dw

)}
du

=
1
3π

∫ ∞

0

`(u)
u

du, say.

Now for all u > 0, ∫ x(1+u)

x|1−u|
sinφ(w) dw ≤ 2xu sin(π/6 +m)

and ∫ x|1−u|

0

sinφ(w) dw ≥ x|1− u|J.

Hence

`(u) ≤


2u

1 + u

{
sin(π/6 +m)

J
− 1

}
, 0 < u ≤ 1,

2
1 + u

{
sin(π/6 +m)

J
− 1

}
, u > 1.

A substitution of this estimate in (70) now gives

(71) φ(x)− π

6
≤ 4 log 2

3π

{
sin(π/6 +m)

J
− 1

}
,
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and in particular by (68),

m ≤ 4 log 2
3π

{
π/6 +m

π/6− p
− 1

}
.

Therefore,

(72) m ≤ 4 log 2
3π

(
p

π/6− p− (4/(3π)) log 2

)
≤ 1.302p = Qp, say,

since p ≤ 0.00304.

Theorem 18 ([3]). p = 0 and φ ≡ π/6.

Proof. According to Lemma 17(i), (67) and (68),

p ≤ 2
3π

log(1 +
√

2) log
{

(π/6 +m) sin(π/6 + p)
(π/6− p) sin(π/6 +m)

}
≤ 2

3π
log(1 +

√
2) log

{
(π/6 +Qp) sin(π/6 + p)
(π/6− p) sin(π/6 +Qp)

}
since θ/sin θ is increasing on (0, π/2) and (72) holds. Since this is false for
0 < p ≤ 0.418 we conclude that p = 0. Thus

∫ x

0
(φ(x)− π/6) dx = 0 for all x > 0

and hence φ ≡ π/6, by differentiation. This completes the proof. �

It has been shown formally by Grant [26] and rigorously by Amick, Fraenkel
[2] and McLeod [44] that

θ∗(s)− π/6 ∼ −Asβ as s↘ 0,

where A > 0 and β ∼ 0.802679 is a root of the equation
√

3(1+β) = tan(πβ/2).
Indeed, modulo some number-theoretic conjectures, Amick and Fraenkel give an
asymptotic expansion for θ∗(s), s > 0. Thus it is known that θ∗ is decreasing
on (0, ε) for some ε > 0. Also θ∗ is decreasing on [π/2, π] because it arises as a
pointwise limit of elements of the cone K.

13. Open questions

A most pressing question is whether θ∗ is monotone on (0, π), as was conjec-
tured when Stokes mused

“whether in the limiting form the inclination of the wave to the horizontal
continually increases from the trough to the summit ... is one that I
cannot certainly decide.”

This question of the convexity of Stokes wave of greatest height is a tanta-
lising open question and, though the numerical evidence points strongly in its
favour (see [16], [61], [62], for some relevant studies), an analytic proof has so far
eluded us. The uniqueness of θ∗ is also open. The operator defined by the right-
hand side of equation (61) behaves numerically like a contraction mapping with
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contraction constant somewhat less than 1/2, and iterations converge rapidly to
a solution [16]. However, there is no mathematical explanation for this rapid
convergence.

We finish with a brief discussion of the question of secondary bifurcation.
The theory of bifurcation from a simple eigenvalue means that the maximal
connected set C is a smooth curve in a neighbourhood of the bifurcation point
(3, 0). Numerical evidence [17], [51] suggests that globally C is a curve, but there
is no proof. A further set of open questions concerns the behaviour of θ when
(µ, θ) ∈ C as µ→∞. McLeod [43] has argued formally that the number of local
maxima and minima of θ increases without bound as µ → ∞ but admits the
lack of a watertight proof. Various other oscillatory phenomena which have been
observed numerically [16] also lack mathematical justification.

Now, for each n ∈ N, let

Cn = {(nµ, θ(nx)) : (µ, θ) ∈ C}.

A simple change of variables shows that Cn is a continuum of solutions of
Nekrasov’s equation which bifurcates from (3n, 0), each element of which yields
a steady water wave of minimal period 2λ/n. Let Dn denote the maximal con-
nected set of nontrivial solutions of Nekrasov’s equation which contains Cn \
{(3n, 0)}. Obviously C1 = D1 since C1 = C and C is maximal, by definition. But
is Cn = Dn for n > 1? The numerical evidence [8], [17], [51] strongly indicates
that the answer is no: there are secondary bifurcation points on each continuum
Cn, n ≥ 2. (Note that the elements of Dn, n ≥ 2, are not Stokes waves as
they have more than one crest and trough per wavelength.) Furthermore, the
evidence [8] suggests that there is a neighbourhood U of 0 in X such that no
point (µ, θ) ∈ [0,∞)× U is a secondary bifurcation point on Dn for any n ∈ N.
(Each Dn is a curve in a neighbourhood of (3n, 0); the point here is that U seems
to be independent of n.)

A highly stimulating explanation for these secondary bifurcation phenomena
has been offered in terms of the generic bifurcations of Hamiltonian dynamical
systems in an important recent paper by Baesens and MacKay [9]. They give a
new and thought-provoking explanation of the huge complexity which has been
uncovered numerically in the steady periodic water-wave problem. However,
there is no rigorous theory so far.

Our mathematical understanding of steady waves and their stability proper-
ties in the wider context of unsteady flow theory is in its infancy, but there has
been significant recent progress, especially for waves on flows of finite depth [13],
[14].
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