THE NIRENBERG PROBLEM IN A DOMAIN WITH BOUNDARY

YanYan Li

Dedicated to L. Nirenberg with admiration

0. Introduction

There has been much work on the Nirenberg problem: which function $K(x)$ on \mathbb{S}^{n} is the scalar curvature of a metric g on \mathbb{S}^{n} pointwise conformal to the standard metric g_{0} ? It is quite natural to ask the following question on the half sphere \mathbb{S}_{-}^{n} : which function $K(x)$ on \mathbb{S}_{-}^{n} is the scalar curvature of a metric g on \mathbb{S}_{-}^{n} which is pointwise conformal to the standard metric g_{0} with $\partial \mathbb{S}_{-}^{n}$ being minimal with respect to g ? For $n=2$, this has been studied by J. Q. Liu and P. L. Li in [LL]. In this note we study the higher dimensional cases along the lines of [L1-2]. For much work on the Nirenberg problem see, for example, [L1-2] and the references therein. See also some more recent work in [CL1], [HL], [Bi1-2], [SZ], [B], [ChL] and [CL2].

For $n \geq 3$, by writing $g=u^{4 /(n-2)} g_{0}$, the problem is equivalent to solving the following Neumann problem on $\mathbb{S}_{-}^{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{S}^{n} \mid x_{n+1}<0\right\}$:

$$
\left\{\begin{array}{lll}
-\Delta_{g_{0}} u+c(n) R_{0} u=c(n) K u^{(n+2) /(n-2)}, & u>0, & \text { on } \mathbb{S}_{-}^{n}, \tag{0.1}\\
\partial u / \partial \nu=0 & \text { on } \partial \mathbb{S}_{-}^{n},
\end{array}\right.
$$

where $c(n)=(n-2) /(4(n-1)), R_{0}=n(n-1)$, and ν denotes the unit outer normal at points of $\partial \mathbb{S}_{-}^{n}$.

1991 Mathematics Subject Classification. Primary 35J60.
Research partially supported by the Alfred P. Sloan Foundation Research Fellowship and NSF grant DMS-9401815.

We introduce

$$
\begin{gathered}
\mathcal{A}=\left\{K \in C^{1}\left(\overline{\mathbb{S}_{-}^{3}}\right) \mid K>0 \text { on } \overline{\mathbb{S}_{-}^{3}}, \nabla K \neq 0 \text { on } \partial \mathbb{S}_{-}^{3}\right\} \\
\mathcal{K}^{-}=\left\{q \in \partial \mathbb{S}_{-}^{3} \mid \nabla_{\tan } K(q)=0, \frac{\partial K}{\partial \nu}(q)>0\right\} \\
\mathcal{M}_{K}=\left\{u \in H^{1}\left(\mathbb{S}_{-}^{3}\right) \mid u \text { satisfies }(0.1)\right\}
\end{gathered}
$$

where $\nabla_{\tan } K(q)$ denotes the tangential derivatives of K at $q \in \partial \mathbb{S}_{-}^{3}$. Clearly \mathcal{A} is open and dense in $C^{1}\left(\overline{\mathbb{S}_{-}^{3}}\right)^{+}$, which consists of positive functions in $C^{1}\left(\overline{\mathbb{S}_{-}^{3}}\right)$. We will introduce an integer-valued continuous function Index : $\mathcal{A} \rightarrow \mathbb{Z}$, with an explicit formula for $K \in \mathcal{A} \cap C^{2}\left(\overline{\mathbb{S}_{-}^{3}}\right)$ with $\left.K\right|_{\partial \mathbb{S}_{-}^{3}}$ being a Morse function. In fact, for any such K, let $i(\bar{P})$ denote the Morse index of $\left.K\right|_{\partial \mathbb{S}_{-}^{3}}$ at $\bar{P} \in \mathcal{K}^{-}$. Then

$$
\begin{equation*}
\operatorname{Index}(K)=-1+\sum_{\bar{P} \in \mathcal{K}^{-}}(-1)^{i(\bar{P})} \tag{0.2}
\end{equation*}
$$

It is proved in Section 3 that Index can be extended from (0.2) as a continuous function on \mathcal{A} with respect to the $C^{1}\left(\mathbb{S}^{3}\right)$ topology.

Theorem 0.1. (a) For any $K \in \mathcal{A}$, there exists some positive constant $C=C(K)$ such that for any $K_{i} \rightarrow K$ in $C^{1}\left(\overline{\mathbb{S}_{-}^{3}}\right)$, and any $u_{i} \in \mathcal{M}_{K_{i}}$,

$$
C^{-1} \leq \liminf _{i \rightarrow \infty}\left(\frac{\min }{\overline{\mathbb{S}_{-}^{3}}} u_{i}\right) \leq \limsup _{i \rightarrow \infty}\left(\max _{\overline{\mathbb{S}_{-}^{3}}} u_{i}\right) \leq C
$$

Furthermore, for all $0<\alpha<1$, there exists $R_{0}=R_{0}(K, \alpha) \gg 1$ such that for all $R>R_{0}$,

$$
\begin{equation*}
\operatorname{deg}\left(u-\frac{1}{8}\left(-\Delta_{g_{0}}+\frac{3}{4}\right)^{-1}\left(K u^{5}\right), \mathcal{O}_{R}, 0\right)=\operatorname{Index}(K) \tag{0.3}
\end{equation*}
$$

where $\mathcal{O}_{R}=\left\{u \in C^{2, \alpha}\left(\overline{\mathbb{S}_{-}^{3}}\right) \mid 1 / R<u<R\right.$ on $\left.\mathbb{S}_{-}^{3},\|u\|_{C^{2, \alpha}\left(\mathbb{S}_{-}^{3}\right)}<R\right\}$, and deg denotes the Leray-Schauder degree.
(b) For any $K \in C^{1}\left(\overline{\mathbb{S}_{-}^{3}}\right)^{+} \backslash \mathcal{A} \equiv \partial \mathcal{A}$, there exist $K_{i} \rightarrow K$ in $C^{1}\left(\overline{\mathbb{S}_{-}^{3}}\right)$ and $u_{i} \in \mathcal{M}_{K_{i}}$ such that

$$
\lim _{i \rightarrow \infty}\left(\max _{\overline{\mathbb{S}_{-}^{3}}} u_{i}\right)=\infty, \quad \lim _{i \rightarrow \infty}\left(\min _{\overline{\mathbb{S}_{-}^{3}}} u_{i}\right)=0
$$

Corollary 0.1. For any $K \in \mathcal{A}$ with $\operatorname{Index}(K) \neq 0$, (0.1) has at least one solution.

Remark 0.1. For $K \in \mathcal{A} \cap C^{2}\left(\overline{\mathbb{S}_{-}^{3}}\right),\left.K\right|_{\partial \mathbb{S}_{-}^{3}}$ being a Morse function, we can use Theorem 3.1 to easily establish a strong Morse inequality as in [SZ], which gives more general existence results than Corollary 0.1.

In deriving Theorem 0.1, we have obtained some detailed information on blow up behavior of solutions which is of independent interest. See Proposition 2.4, Theorem 2.1 and Theorem 3.1.

Acknowledgments. Part of this work was completed while the author was visiting Courant Institute; he would like to express his thanks for the kind hospitality.

1. A Pokhozhaev type identity

For $\sigma>0$ and $\bar{x} \in \mathbb{R}^{n}$, we set $\mathbb{R}_{+}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n}>0\right\}$, $B_{\sigma}(\bar{x})=\left\{x \in \mathbb{R}^{n}| | x \mid<\sigma\right\}, B_{\sigma}=B_{\sigma}(0), B_{\sigma}^{+}(\bar{x})=B_{\sigma}(\bar{x}) \cap \mathbb{R}_{+}^{n}$, and $B_{\sigma}^{+}=$ $B_{\sigma}^{+}(0)$.

The following is a Pokhozhaev type identity. The proof is standard by now (see e.g. [L1]).

Lemma 1.1. Let $p \geq 1, \sigma>0, n \geq 3, B_{\sigma}^{+} \subset \mathbb{R}_{+}^{n}$, and $u \in C^{2}\left(B_{\sigma}^{+}\right) \cap C^{1}\left(\overline{B_{\sigma}^{+}}\right)$ be a solution of

$$
\begin{cases}-\Delta u=c(n) K(x)|u|^{p-1} u, & x \in B_{\sigma}^{+} \\ \partial u / \partial x_{n}=0, & x \in \partial B_{\sigma}^{+} \cap \partial \mathbb{R}_{+}^{n}\end{cases}
$$

We have

$$
\begin{aligned}
& \frac{c(n)}{p+1} \sum_{i} \int_{B_{\sigma}^{+}} x_{i} \frac{\partial K}{\partial x_{i}}|u|^{p+1}+\left(\frac{n}{p+1}-\frac{n-2}{2}\right) c(n) \int_{B_{\sigma}^{+}} K|u|^{p+1} \\
&-\frac{\sigma c(n)}{p+1} \int_{\partial B_{\sigma} \cap \mathbb{R}_{+}^{n}} K|u|^{p+1}=\int_{\partial B_{\sigma} \cap \mathbb{R}_{+}^{n}} B(\sigma, x, u, \nabla u),
\end{aligned}
$$

where

$$
B(\sigma, x, u, \nabla u)=\frac{n-2}{2} u \frac{\partial u}{\partial \nu}-\frac{\sigma}{2}|\nabla u|^{2}+\sigma\left(\frac{\partial u}{\partial \nu}\right)^{2}
$$

with ν denoting the unit outer normal of ∂B_{σ}.

2. Analysis of blow ups

Let $\Omega \subset \mathbb{R}^{n}(n \geq 3)$ be a bounded domain containing the origin, $\Omega^{+}=$ $\Omega \cap \mathbb{R}_{+}^{n}, \tau_{i} \geq 0$ satisfy $\lim _{i \rightarrow \infty} \tau_{i}=0, p_{i}=\frac{n+2}{n-2}-\tau_{i}$, and $\left\{K_{i}\right\} \in L^{\infty}\left(\Omega^{+}\right)$satisfy, for some constant $A_{1}>0$,

$$
\begin{equation*}
1 / A_{1} \leq K_{i}(x) \leq A_{1} \quad \text { for all } x \in \Omega^{+} \tag{2.1}
\end{equation*}
$$

Consider

$$
\begin{cases}-\Delta u_{i}=c(n) K_{i}(x) u^{p_{i}}, & u_{i}>0, \tag{2.2}\\ \text { in } \Omega^{+} \\ \partial u_{i} / \partial x_{n}=0 & \text { on } \partial \Omega^{+} \cap \partial \mathbb{R}_{+}^{n} .\end{cases}
$$

Definition 2.1. A point $\bar{y} \in \Omega \cap \overline{\mathbb{R}_{+}^{n}}$ is called a blow up point of $\left\{u_{i}\right\}$ if there exists a sequence $y_{i} \in \overline{\Omega^{+}}$tending to \bar{y} such that $u_{i}\left(y_{i}\right) \rightarrow \infty$.

Definition 2.2. A point $\bar{y} \in \Omega \cap \overline{\mathbb{R}_{+}^{n}}$ is called an isolated blow up point of $\left\{u_{i}\right\}$ if there exist $0<\bar{r}<\operatorname{dist}\left(\bar{y}, \partial \Omega \cap \mathbb{R}_{+}^{n}\right), \bar{C}>0$, and a sequence y_{i} tending to \bar{y} such that y_{i} is a local maximum of u_{i} in $\overline{\Omega^{+}}, u_{i}\left(y_{i}\right) \rightarrow \infty$ and

$$
u_{i}(y) \leq \bar{C}\left|y-y_{i}\right|^{-2 /\left(p_{i}-1\right)} \quad \text { for all } y \in B_{\bar{r}}\left(y_{i}\right) \cap \Omega^{+} .
$$

We point out that the $\left\{y_{i}\right\}$ in Definition 2.2 are uniquely determined for large i provided $\left\{K_{i}\right\}$ is bounded in $C^{\alpha}\left(\overline{\Omega^{+}}\right)$for some $0<\alpha<1$. Let $y_{i} \rightarrow \bar{y}$ be an isolated blow up point of $\left\{u_{i}\right\}$. We define

$$
\bar{u}_{i}(r)=\frac{1}{\left|\partial B_{r}\left(y_{i}\right) \cap \Omega^{+}\right|} \int_{\partial B_{r}\left(y_{i}\right) \cap \Omega^{+}} u_{i}, \quad r>0
$$

and

$$
\bar{w}_{i}(r)=r^{2 /\left(p_{i}-1\right)} \bar{u}_{i}(r), \quad r>0 .
$$

Definition 2.3. $\bar{y} \in \Omega \cap \overline{\mathbb{R}_{+}^{n}}$ is called an isolated simple blow up point of $\left\{u_{i}\right\}$ if $y_{i} \rightarrow \bar{y}$ is an isolated blow up point such that, for some $\varrho>0$ (independent of i),

$$
\begin{equation*}
\bar{w}_{i} \text { has precisely one critical point in }(0, \varrho), \tag{2.3}
\end{equation*}
$$

for large i. In addition,

$$
\begin{equation*}
y_{i} \in \Omega \cap \partial \mathbb{R}_{+}^{n} \tag{2.4}
\end{equation*}
$$

for large i if $\bar{y} \in \Omega \cap \partial \mathbb{R}_{+}^{n}$.
If $\bar{y} \in \Omega \cap \partial \mathbb{R}_{+}^{n}$ in the above, we call it a boundary isolated simple blow up point.

Lemma 2.1. Let $\left\{K_{i}\right\} \in L^{\infty}\left(\Omega^{+}\right),\left\{u_{i}\right\}$ satisfy (2.2) and $y_{i} \rightarrow \bar{y} \in \Omega$ be an isolated blow up point. Then for any $0<r<\frac{1}{3} \bar{r}$, we have the following Harnack inequality:

$$
\sup _{y \in B_{2 r}^{+}\left(y_{i}\right) \backslash B_{r / 2}^{+}\left(y_{i}\right)} u_{i}(y) \leq C \inf _{y \in B_{2 r}^{+}\left(y_{i}\right) \backslash B_{r / 2}^{+}\left(y_{i}\right)} u_{i}(y),
$$

where C is a positive constant depending only on n, \bar{C} and $\sup _{i}\left\|K_{i}\right\|_{L^{\infty}\left(B_{\bar{r}}^{+}\left(y_{i}\right)\right)}$.
Proof. Reflect u_{i} evenly to \mathbb{R}_{-}^{n}, and apply Lemma 2.1 of [L1].
Proposition 2.1. Suppose $\left\{K_{i}\right\} \in C^{0,1}\left(\bar{\Omega} \cap \overline{\mathbb{R}_{+}^{n}}\right)$ satisfies (2.1) for some $A_{1}>0$, and

$$
\begin{equation*}
\left\|\nabla K_{i}\right\|_{L^{\infty}\left(\Omega^{+}\right)} \leq A_{2} \tag{2.5}
\end{equation*}
$$

for some $A_{2}>0$. Let $\left\{u_{i}\right\}$ satisfy (2.2), $\bar{y} \in \Omega \cap \overline{\mathbb{R}_{+}^{n}}$ be an isolated blow up point of $\left\{u_{i}\right\}$ and $\left\{y_{i}\right\}$ be the sequence of points as in Definition 2.2. Then for any $R_{i} \rightarrow \infty$ and $\varepsilon_{i} \rightarrow 0^{+}$, after passing to a subsequence, we have either

$$
\left\{\begin{array}{l}
r_{i}:=R_{i} u_{i}\left(y_{i}\right)^{-\left(p_{i}-1\right) / 2} \rightarrow 0 \quad \text { as } i \rightarrow \infty, \quad B_{2 r_{i}}\left(y_{i}\right) \subset \Omega^{+}, \\
\left\|u_{i}\left(y_{i}\right)^{-1} u_{i}\left(u_{i}\left(y_{i}\right)^{-\left(p_{i}-1\right) / 2} \cdot+y_{i}\right)-\left(1+k_{i}|\cdot|^{2}\right)^{(2-n) / 2}\right\|_{C^{2}\left(B_{2 R_{i}}\right)} \leq \varepsilon_{i},
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
r_{i} \rightarrow 0 \quad \text { as } i \rightarrow \infty, \quad y_{i} \in \Omega \cap \partial \mathbb{R}_{+}^{n}, \\
\left\|u_{i}\left(y_{i}\right)^{-1} u_{i}\left(u_{i}\left(y_{i}\right)^{-\left(p_{i}-1\right) / 2} \cdot+y_{i}\right)-\left(1+k_{i}|\cdot|^{2}\right)^{(2-n) / 2}\right\|_{C^{2}\left(\overline{B_{2 R_{i}}^{+}}\right)} \leq \varepsilon_{i},
\end{array}\right.
$$

where $k_{i}=c(n)(n(n-2))^{-1} K_{i}\left(y_{i}\right)$.
Proof. We will only prove this for $\bar{y} \in \Omega \cap \partial \mathbb{R}_{+}^{n}$. Without loss of generality, we take $\bar{y}=0$.

Writing $y_{i}=\left(y_{i 1}, y_{i 2}, y_{i 3}\right)$, we consider

$$
w_{i}(z)=u_{i}\left(y_{i}\right)^{-1} u_{i}\left(u_{i}\left(y_{i}\right)^{\left(1-p_{i}\right) / 2} z+y_{i}\right), \quad z_{3} \geq-u_{i}\left(y_{i}\right)^{\left(p_{i}-1\right) / 2} y_{i 3} \equiv-T_{i} .
$$

It is easy to see that $w_{i}(0)=1, z=0$ is a local maximum point of w_{i} in $z_{3} \geq-T_{i}$, and w_{i} satisfies

$$
\left\{\begin{array}{lll}
-\Delta w_{i}(z)=c(n) K_{i}\left(u_{i}\left(y_{i}\right)^{\left(1-P_{i}\right) / 2} z+y_{i}\right) w_{i}(z)^{p_{i}}, & w_{i}(z)>0, & z_{3}>-T_{i} \\
\partial w_{i} / \partial z_{3}=0, & & z_{3}=-T_{i}
\end{array}\right.
$$

After passing to a subsequence, there are three cases.
Case 1: $T_{i} \rightarrow \infty$.
CASE 2: $T_{i} \rightarrow 0$.
CASE 3: $T_{i} \rightarrow T \in(0, \infty)$.
It is not difficult to see that Case 1 and Case 2 lead to the conclusion of Proposition 2.1. Case 3 cannot occur since if it occurred, the limit function w of $\left\{w_{i}\right\}$ would satisfy

$$
\left\{\begin{array}{lll}
-\Delta w=w^{(n+2) /(n-2)}, & w>0, & z_{3}>-T \\
\partial w / \partial z_{3}=0, & z_{3}=-T<0 \\
\nabla w(0)=0 &
\end{array}\right.
$$

Making an even extension across $z_{3}=-T$ produces a positive solution of $-\Delta w=$ $w^{(n+2) /(n-2)}$ in \mathbb{R}^{n} with two critical points, which violates the uniqueness result of [CGS].

Proposition 2.2. Suppose $\left\{K_{i}\right\} \in C^{1}\left(\overline{B_{2}^{+}}\right)$satisfies (2.1) and (2.5) for some constants $A_{1}, A_{2}>0$ with $\Omega=B_{2}$. Suppose also that u_{i} satisfies (2.2) with $\Omega=B_{2}$, and $y_{i} \rightarrow \bar{y} \in \overline{B_{1 / 4}^{+}}$is an isolated blow up point with, for some positive constant A_{3},

$$
\begin{equation*}
\left|y-y_{i}\right|^{2 /\left(p_{i}-1\right)} u_{i}(y) \leq A_{3} \quad \text { for all } y \in B_{2}^{+} \tag{2.6}
\end{equation*}
$$

Then there exists some positive constant $C=C\left(n, A_{1}, A_{2}, A_{3}\right)$ such that, for i large enough,

$$
u_{i}(y) \geq C^{-1} u_{i}\left(y_{i}\right)\left(1+k_{i} u_{i}\left(y_{i}\right)^{p_{i}-1}\left|y-y_{i}\right|^{2}\right)^{(2-n) / 2} \quad \text { for all } y \in B_{1}^{+}\left(y_{i}\right)
$$

In particular, for i large enough, we have

$$
u_{i}\left(y_{i}+e\right) \geq C^{-1} u_{i}\left(y_{i}\right)^{-1+(n-2) \tau_{i} / 2}
$$

for all $e \in \mathbb{R}^{n}$ with $|e|=1$ and $y_{i}+e \in B_{2}^{+}$.
Proof. Set $r_{i}=R_{i} u_{i}\left(y_{i}\right)^{-\left(p_{i}-1\right) / 2}$. It follows from Proposition 2.1 that

$$
u_{i}(y) \geq C^{-1} u_{i}\left(y_{i}\right) R_{i}^{2-n} \quad \text { for all } y \in \partial B_{r_{i}}\left(y_{i}\right) \cap B_{2}^{+} .
$$

Set

$$
\begin{aligned}
\varphi_{i}(y)=C^{-1} R_{i}^{2-n} r_{i}^{n-2} u_{i}\left(y_{i}\right)\left(\left|y-y_{i}\right|^{2-n}-(3 / 2)^{2-n}\right) & \\
& y \in B_{3 / 2}\left(y_{i}\right) \backslash B_{r_{i}}\left(y_{i}\right) \cap B_{2}^{+} .
\end{aligned}
$$

Clearly φ_{i} satisfies

$$
\begin{cases}\Delta \varphi_{i}(y)=0 \geq \Delta u_{i}(y), & y \in B_{3 / 2}\left(y_{i}\right) \backslash B_{r_{i}}\left(y_{i}\right) \cap B_{2}^{+} \\ \varphi_{i}(y)=0 \leq u_{i}(y), & y \in \partial B_{3 / 2}\left(y_{i}\right) \cap B_{2}^{+} \\ \varphi_{i}(y) \leq u_{i}(y), & y \in \partial B_{r_{i}}\left(y_{i}\right) \cap B_{2}^{+} \\ \frac{\partial \varphi_{i}}{\partial y_{n}}(y) \geq 0=\frac{\partial u_{i}}{\partial y_{n}}(y), & y \in \partial\left(B_{3 / 2}\left(y_{i}\right) \backslash B_{r_{i}}\left(y_{i}\right)\right) \cap \partial \mathbb{R}_{+}^{n}\end{cases}
$$

It follows from the maximum principle that

$$
u_{i}(y) \geq \varphi_{i}(y) \quad \text { for all } y \in\left(B_{3 / 2}\left(y_{i}\right) \backslash B_{r_{i}}\left(y_{i}\right)\right) \cap \mathbb{R}_{+}^{n}
$$

Proposition 2.2 follows immediately from the above and Proposition 2.1.
Proposition 2.3. Suppose $\left\{K_{i}\right\} \subset C^{0,1}\left(\bar{B}_{2} \cap \overline{\mathbb{R}_{+}^{n}}\right)$ satisfies (2.1), (2.5) with $\Omega=B_{2}$ for some $A_{1}, A_{2}>0$. Suppose also that u_{i} satisfies (2.2) with $\Omega=B_{2}$, and $y_{i} \rightarrow 0$ is a boundary isolated simple blow up point with (2.3), (2.4) and (2.6) for some positive constants ϱ and A_{3}. Then there exists some positive constant $C=C\left(n, A_{1}, A_{2}, A_{3}, \varrho\right)$ such that

$$
\begin{array}{cl}
u_{i}(y) \leq C u_{i}\left(y_{i}\right)^{-1}\left|y-y_{i}\right|^{2-n} & \text { for all } y \in B_{1}\left(y_{i}\right)^{+} \\
\tau_{i}=O\left(u_{i}\left(y_{i}\right)^{-2 /(n-2)+o(1)}\right), & u_{i}\left(y_{i}\right)^{\tau_{i}}=1+o(1)
\end{array}
$$

where @ is the constant in Definition 2.3, and o(1) denotes some quantity tending to 0 as i tends to ∞. Furthermore, for some harmonic function $b(y)$ in B_{1}^{+}with $\partial b / \partial y_{n}=0$ on $\partial B_{1}^{+} \cap \partial \mathbb{R}_{+}^{n}$, we have, after passing to a subsequence,

$$
u_{i}\left(y_{i}\right) u_{i}(y) \rightarrow h(y)=a|y|^{2-n}+b(y) \quad \text { in } C_{\mathrm{loc}}^{2}\left(\overline{B_{1}^{+}} \backslash\{0\}\right),
$$

where

$$
a=\lim _{i \rightarrow \infty} k_{i}^{(2-n) / 2}=c(n)^{(2-n) / 2}[n(n-2)]^{(n-2) / 2}\left(\lim _{i \rightarrow \infty} K_{i}(0)\right)^{(2-n) / 2}
$$

Remark 2.1. When $y_{i} \rightarrow \bar{y} \in B_{2}^{+}$is an interior isolated simple blow up point, similar results have been given in Proposition 2.3 of [L1]. It is clear that the hypothesis $\left\{K_{i}\right\} \subset C_{\mathrm{loc}}^{1}\left(B_{2}\right)$ there can be relaxed to $\left\{K_{i}\right\} \subset C_{\mathrm{loc}}^{0,1}\left(B_{2}\right)$, and the same proof works.

Proof of Proposition 2.3. The assertion follows from Proposition 2.3 and Lemma 2.3 of [L1] after extending u_{i} evenly to \mathbb{R}_{-}^{n}.

Lemma 2.3. Under the hypotheses of Proposition 2.3 , for any $f \in L^{1}\left(\mathbb{S}_{+}^{n-1}\right)$ with $\int_{\mathbb{S}_{+}^{n-1}} f=0$, we have

$$
\begin{aligned}
& \int_{B_{r_{i}\left(y_{i}\right)}^{+}} f\left(\frac{y-y_{i}}{\left|y-y_{i}\right|}\right)\left|y-y_{i}\right|^{s} u_{i}(y)^{p_{i}+1} \\
& = \begin{cases}u_{i}\left(y_{i}\right)^{-2 s /(n-2)}\left\{\left[\left|\mathbb{S}_{+}^{n-1}\right|^{-1} \int_{\mathbb{S}_{+}^{n-1}} f\right] \int_{\mathbb{R}_{+}^{n}}|z|^{s}\left(1+k_{i}|z|^{2}\right)^{-n} d z+o(1)\right\}, \\
O\left(\left|\int_{\mathbb{S}_{+}^{n-1}} f\right| u_{i}\left(y_{i}\right)^{-2 n /(n-2)} \log u_{i}\left(y_{i}\right)\right)+o\left(u_{i}\left(y_{i}\right)^{-2 n /(n-2)} \log u_{i}\left(y_{i}\right)\right), \\
& s=n, \\
o\left(u_{i}\left(y_{i}\right)^{-2 n /(n-2)}\right), & s>n,\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{B_{1}^{+}\left(y_{i}\right) \backslash B_{r_{i}}^{+}\left(y_{i}\right)}\left|y-y_{i}\right|^{s} u_{i}(y)^{p_{i}+1} \\
\leq \begin{cases}o\left(u_{i}\left(y_{i}\right)^{-2 s /(n-2)}\right), & -n<s<n, \\
O\left(u_{i}\left(y_{i}\right)^{-2 n /(n-2)} \log u_{i}\left(y_{i}\right)\right), & s=n, \\
O\left(u_{i}\left(y_{i}\right)^{-2 n /(n-2)}\right), & s>n,\end{cases}
\end{aligned}
$$

where $k_{i}=[n(n-2)]^{-1} c(n) K_{i}\left(y_{i}\right)$.
Proof. This follows from Proposition 2.1, Proposition 2.3 and some elementary calculations.

Lemma 2.4. Suppose $\left\{K_{i}\right\} \in C^{0,1}\left(\overline{B_{2}^{+}}\right)$satisfies (2.1), (2.5) with $\Omega=B_{2}$, $n=3$, and some positive constants A_{1}, A_{2}. Suppose also that u_{i} satisfies (2.2), and $y_{i} \rightarrow 0$ is an isolated simple blow up point. Then

$$
\tau_{i}=O\left(u_{i}\left(y_{i}\right)^{-2}\right)
$$

If we further assume that $\left\{\nabla K_{i}\right\} \in C^{0}\left(\overline{B_{2}^{+}}\right)$has a uniform modulus of continuity, then

$$
\lim _{i \rightarrow \infty} u_{i}\left(y_{i}\right)^{2} \int_{B_{\sigma}^{+}\left(y_{i}\right)}\left(y-y_{i}\right) \cdot \nabla K_{i} u_{i}^{p_{i}+1}=0
$$

Proof. It follows from Lemma 1.1 (with $\sigma=1$), Proposition 2.3, Lemma 2.3 and some standard elliptic estimates that
$\tau_{i} \leq C \int_{B_{1}^{+}\left(y_{i}\right)}\left|y-y_{i}\right| u_{i}^{p_{i}+1}+C \int_{\partial B_{1}\left(y_{i}\right) \cap \mathbb{R}_{+}^{3}}\left(u_{i}^{p_{i}+1}+u_{i}^{2}+\left|\nabla u_{i}\right|^{2}\right) \leq C u_{i}\left(y_{i}\right)^{-2}$.
Using the additional property of $\left\{\nabla K_{i}\right\}$ and Lemma 2.3, we have

$$
\begin{aligned}
& \int_{B_{\sigma}^{+}\left(y_{i}\right)}\left(y-y_{i}\right) \cdot \nabla K_{i} u_{i}^{p_{i}+1} \\
&= \nabla K_{i}\left(y_{i}\right) \cdot \int_{B_{\sigma}^{+}\left(y_{i}\right)}\left(y-y_{i}\right) u_{i}^{p_{i}+1} \\
&+O\left(\int_{B_{\sigma}^{+}\left(y_{i}\right)}\left|y-y_{i}\right| \cdot\left|\nabla K_{i}(y)-\nabla K_{i}\left(y_{i}\right)\right| u_{i}^{p_{i}+1}\right) \\
&= o\left(u_{i}\left(y_{i}\right)^{-2}\right) .
\end{aligned}
$$

Proposition 2.4. Suppose $\left\{K_{i}\right\} \in C^{1}\left(\overline{B_{2}^{+}}\right)$satisfies (2.1) and (2.5) with $\Omega=B_{2}, n=3$, and some positive constants A_{1}, A_{2}. Suppose also that u_{i} satisfies (2.2), and $y_{i} \rightarrow 0$ is an isolated blow up point with (2.6) for some positive constant A_{3}. Then it is an isolated simple blow up point.

Proof. We first show that

$$
\begin{equation*}
y_{i} \in \partial B_{1}^{+} \cap \partial \mathbb{R}_{+}^{3} \quad \text { for } i \text { large enough. } \tag{2.7}
\end{equation*}
$$

Let $y_{i}=\left(y_{i 1}, y_{i 2}, y_{i 3}\right)$. Supposing the contrary of (2.7), we can assume, after passing to a subsequence, that $y_{i 3}>0$ for all i and (using Proposition 2.1) that for some $R_{i} \rightarrow \infty, y_{i 3} u_{i}\left(y_{i}\right)^{\left(p_{i}-1\right) / 2}>R_{i}$.

Consider

$$
\xi_{i}(z)=y_{i 3}^{2 /\left(p_{i}-1\right)} u_{i}\left(y_{i}+y_{i 3} z\right), \quad z \in B_{1 / y_{i 3}} \cap\left\{z \mid z_{3}>-1\right\} .
$$

Clearly ξ_{i} satisfies

$$
\begin{cases}-\Delta \xi_{i}(z)=c(n) \widetilde{K}_{i}(z) \xi_{i}(z)^{p_{i}}, & z \in B_{1 / y_{i 3}} \cap\left\{z \mid z_{3}>-1\right\} \\ \partial \xi_{i} / \partial z_{3}=0, & z \in\left\{z\left|z_{3}=-1,|z|<1 / y_{i 3}\right\},\right. \\ |z|^{2 /\left(p_{i}-1\right)} \xi_{i}(z) \leq A_{3}, & z \in B_{1 / y_{i 3}} \cap\left\{z \mid z_{3}>-1\right\} \\ \lim _{i \rightarrow \infty} \xi_{i}(0)=\infty, & \end{cases}
$$

where $\widetilde{K}_{i}(z)=K_{i}\left(y_{i}+y_{i 3} z\right)$.
It follows from Proposition 3.1 of [L1] that $z=0$ is an isolated simple blow up point of $\left\{\xi_{i}\right\}$. Extend ξ_{i} to $\left\{z_{3}<-1\right\}$ by setting $\xi_{i}\left(z_{1}, z_{2}, z_{3}\right)=\xi_{i}\left(z_{1}, z_{2},-2-z_{3}\right)$. It follows from Proposition 2.3 of [L1] and the maximum principle that

$$
\xi_{i}(0) \xi_{i}(z) \rightarrow h(z)=a\left(|z|^{2-n}+|z-(0,0,-2)|^{2-n}\right)+b \quad \text { in } C_{\mathrm{loc}}^{2}\left(\mathbb{R}^{3} \backslash\{0\}\right),
$$

for some constants $a>0$ and $b \geq 0$. Applying Corollary 1.1 of [L1], for all $0<\sigma<1$ we have

$$
\int_{\partial B_{\sigma}} B\left(\sigma, z, \xi_{i}, \nabla \xi_{i}\right) \geq \frac{c(n)}{p_{i}+1} \int_{B_{\sigma}} z \cdot \nabla \widetilde{K}_{i} \xi_{i}^{p_{i}+1}+O\left(\xi_{i}(0)^{-p_{i}-1}\right)
$$

Multiplying the above by $\xi_{i}(0)^{2}$ and sending i to ∞, we obtain (using Lemma 2.4 of [L1])

$$
\int_{\partial B_{\sigma}} B(\sigma, z, h, \nabla h) \geq 0, \quad \forall 0<\sigma<1 .
$$

However, a direct calculation contradicts the above (using $b \geq 0$) for $\sigma>0$ small. This establishes (2.7).

It follows from Proposition 2.1 that $r^{2 /\left(p_{i}-1\right)} \bar{u}_{i}(r)$ has precisely one critical point in the interval $0<r<r_{i}$. Suppose it is not an isolated simple blow up point and let μ_{i} be the second critical point of $r^{2 /\left(p_{i}-1\right)} \bar{u}_{i}(r)$. We know that

$$
\begin{equation*}
\mu_{i} \geq r_{i}, \quad \lim _{i \rightarrow \infty} \mu_{i}=0 \tag{2.8}
\end{equation*}
$$

Without loss of generality (using (2.7)), we assume that $y_{i}=0$. Set

$$
\xi_{i}(y)=\mu_{i}^{2 /\left(p_{i}-1\right)} u_{i}\left(\mu_{i} y\right), \quad y \in B_{1 / \mu_{i}}^{+} .
$$

It follows from (2.2) and (2.8) that ξ_{i} satisfies

$$
\begin{cases}-\Delta \xi_{i}(y)=c(n) \widetilde{K}_{i}(y) \xi_{i}(y)^{p_{i}}, & y \in B_{1 / \mu_{i}}^{+} \tag{2.9}\\ \frac{\partial \xi_{i}}{\partial y_{3}}(y)=0, & y \in \partial B_{1 / \mu_{i}}^{+} \cap \partial \mathbb{R}_{+}^{3}, \\ |y|^{2 /\left(p_{i}-1\right)} \xi_{i}(y) \leq A_{3}, & y \in B_{1 / \mu_{i}}^{+}, \\ \lim _{i \rightarrow \infty} \xi_{i}(0)=\infty, & \\ r^{2 /\left(p_{i}-1\right)} \bar{\xi}_{i}(r) \text { has precisely one critical point in } 0<r<1 \\ \left.\frac{d}{d r}\left\{r^{2 /\left(p_{i}-1\right)} \bar{\xi}_{i}(r)\right\}\right|_{r=1}=0, & \end{cases}
$$

where $\widetilde{K}_{i}(y)=K_{i}\left(\mu_{i} y\right)$ and $\bar{\xi}_{i}(r)=\left|\partial B_{r}^{+} \cap \mathbb{R}_{+}^{3}\right|^{-1} \int_{\partial B_{r}^{+} \cap \mathbb{R}_{+}^{3}} \xi_{i}$.

It follows that $\{0\}$ is an isolated simple blow up point of $\left\{\xi_{i}\right\}$. Using Proposition 2.3 and the maximum principle, for some constants $a>0$ and $b \geq 0$ we have

$$
\begin{equation*}
\xi_{i}(0) \xi_{i}(y) \rightarrow h(y)=a|y|^{2-n}+b \quad \text { in } C_{\mathrm{loc}}^{2}\left(\overline{\mathbb{R}_{+}^{3}} \backslash\{0\}\right) \tag{2.10}
\end{equation*}
$$

Using the last property in (2.9) and (2.10), we obtain $b=a>0$. Applying Lemma 1.1, for all $0<\sigma<1$ we have

$$
\int_{\partial B_{\sigma} \cap \mathbb{R}_{+}^{3}} B\left(\sigma, y, \xi_{i}, \nabla \xi_{i}\right) \geq \frac{c(n)}{p_{i}+1} \int_{B_{\sigma}^{+}} z \cdot \nabla \widetilde{K}_{i} \xi_{i}^{p_{i}+1}+O\left(\xi_{i}(0)^{-p_{i}-1}\right) .
$$

Multiplying the above by $\xi_{i}(0)^{2}$ and sending i to ∞, we obtain (by Lemma 2.4)

$$
\int_{\partial B_{\sigma} \cap \mathbb{R}_{+}^{3}} B(\sigma, y, h, \nabla h) \geq 0, \quad \forall 0<\sigma<1
$$

However, a direct calculation contradicts the above (using $b>0$) for $\sigma>0$ small.
Proposition 2.5. For $n=3$, let $\left\{K_{i}\right\}$ be a convergent sequence of functions in $C^{1}\left(\overline{B_{2}^{+}}\right)$. Suppose $\left\{u_{i}\right\}$ satisfies (2.2) and $y_{i} \rightarrow 0$ is a boundary isolated simple blow up point. Then

$$
\left|\nabla_{\tan } K_{i}\left(y_{i}\right)\right|=o(1)
$$

If we further assume that $K_{i} \in C^{1,1}\left(B_{2}^{+}\right)$with $\left\|\partial^{2} K_{i}\right\|_{L^{\infty}\left(B_{2}^{+}\right)}$uniformly bounded, then

$$
\left|\nabla_{\tan } K_{i}\left(y_{i}\right)\right|=O\left(u_{i}\left(y_{i}\right)^{-2}\right)
$$

Proof. Define a smooth cutoff function $\eta \in C^{\infty}\left(\overline{\mathbb{R}_{+}^{3}}\right)$ satisfying

$$
\begin{array}{ll}
\eta(x)=1, & x \in \overline{B_{1 / 4}^{+}} \\
\eta(x)=0, & x \in \overline{\mathbb{R}_{+}^{3}} \backslash B_{1 / 2} .
\end{array}
$$

By multiplying (2.2) by $\eta \partial u_{i} / \partial x_{j}(1 \leq j \leq 2)$ and integrating by parts on B_{1}^{+}, it follows from Proposition 2.3 and some standard elliptic estimates that

$$
\left|\int_{B_{1}^{+}} \frac{\partial K_{i}}{\partial x_{j}} u_{i}^{p_{i}+1}\right| \leq C u_{i}\left(y_{i}\right)^{-2}+C \tau_{i}
$$

By a suitable Taylor expansion of $\partial K_{i} / \partial x_{j}$ at y_{i}, Proposition 2.5 follows from Lemmas 2.3 and 2.4.

For $2 \leq p \leq 5$, consider

$$
\begin{cases}-\Delta_{g_{0}} u+\frac{3}{4} u=\frac{1}{8} K u^{p}, & u>0, \tag{2.11}\\ \partial u / \partial \nu=0 & \text { on } \mathbb{S}_{-}^{3} \\ \text { on } \partial \mathbb{S}_{-}^{3}\end{cases}
$$

where ν denotes the unit outer normal at points of $\partial \mathbb{S}_{-}^{3}$.

Theorem 2.1. Let $\left\{K_{i}\right\}$ converge in $C^{1}\left(\overline{\mathbb{S}_{-}^{3}}\right)$ norm to some positive function. Suppose $\left\{u_{i}\right\}$ satisfies (2.11) with $K=K_{i}$. Then after passing to a subsequence, $\left\{u_{i}\right\}$ is either uniformly bounded in $\overline{\mathbb{S}_{-}^{3}}$, or has precisely one blow up point which is a boundary isolated simple blow up point. Moreover, if we let $q_{i} \rightarrow \bar{q}$ denote the boundary isolated simple blow up point as in Definition 2.2, then for some constant $b_{1}>0$,

$$
\begin{equation*}
\nabla_{\tan } K_{i}\left(q_{i}\right)=o(1), \quad \tau_{i}=b_{1} \frac{\partial K_{i}}{\partial \nu}\left(q_{i}\right) u_{i}\left(q_{i}\right)^{-2}+o\left(u_{i}\left(q_{i}\right)^{-2}\right) \tag{2.12}
\end{equation*}
$$

A consequence of Theorem 2.1 is the following a priori estimate on solutions of (0.1).

Corollary 2.1. Let $K \in C^{1}\left(\overline{\mathbb{S}_{-}^{3}}\right)$ be some positive function with no critical point on $\partial \mathbb{S}_{-}^{3}$. Then for any solution u of (0.1) and any $0<\alpha<1$, we have

$$
1 / C \leq \min _{\overline{\mathbb{S}_{-}^{3}}} u \leq \max _{\overline{\mathbb{S}_{-}^{3}}} u \leq C, \quad\|u\|_{C^{2, \alpha}\left(\mathbb{S}_{-}^{3}\right)} \leq C
$$

where $C>0$ depends continuously on $\min _{\overline{\mathbb{S}_{-}^{3}}} K>0,\|\nabla K\|_{L^{\infty}\left(\mathbb{S}_{-}^{3}\right)},\|\nabla K\|_{L^{\infty}\left(\partial \mathbb{S}_{-}^{3}\right)}$ >0, and $0<\alpha<1$.

Proposition 2.5. Suppose that $K \in C^{0,1}\left(\overline{\mathbb{S}_{-}^{3}}\right)$ satisfies, for some positive constants A_{1}, A_{2},

$$
\begin{equation*}
K(q) \geq 1 / A_{1} \quad \text { for all } q \in \mathbb{S}_{-}^{3}, \quad\|\nabla K\|_{L^{\infty}\left(\mathbb{S}_{-}^{3}\right)} \leq A_{2} \tag{2.13}
\end{equation*}
$$

Then for any $0<\varepsilon<1$ and $R>1$, there exist some positive constants $C_{0}^{*}=$ $C_{0}^{*}\left(\varepsilon, R, A_{1}, A_{2}\right)$ and $C_{1}^{*}=C_{1}^{*}\left(\varepsilon, R, A_{1}, A_{2}\right)>1$ such that if u is a solution of (2.11) with

$$
\max _{\overline{\mathbb{S}_{-}^{3}}} u>C_{0}^{*},
$$

then there exists $1 \leq k=k(u)<\infty$ and a set $\mathcal{S}(u)=\left\{q_{1}, \ldots, q_{k}\right\} \subset \overline{\mathbb{S}_{-}^{3}}$ $\left(q_{j}=q_{j}(u)\right)$ such that
(1) $0 \leq \tau \equiv 5-p<\varepsilon$,
(2) q_{1}, \ldots, q_{k} are local maxima of u and if, for each $1 \leq j \leq k$, we let y be some geodesic normal coordinates centered at q_{j}, then

$$
\begin{cases}\left\|u(0)^{-1} u\left(u(0)^{-(p-1) / 2} y\right)-\delta_{j}(y)\right\|_{C^{2}\left(B_{2 R}\right)}<\varepsilon, & \\ B_{R u\left(q_{j}\right)^{-(p-1) / 2}}\left(q_{j}\right) \subset \mathbb{S}_{-}^{3} & \text { if } q_{j} \in \mathbb{S}_{-}^{3} \\ \left\|u(0)^{-1} u\left(u(0)^{-(p-1) / 2} y\right)-\delta_{j}(y)\right\|_{C^{2}\left(B_{2 R}^{+}\right)}<\varepsilon & \text { if } q_{j} \in \partial \mathbb{S}_{-}^{3}\end{cases}
$$

and $\left\{B_{R u\left(q_{j}\right)^{-(p-1) / 2}}\left(q_{j}\right)\right\}_{1 \leq j \leq k}$ are disjoint, where

$$
\delta_{j}(y)=\left(1+k_{j}|y|^{2}\right)^{(2-n) / 2} \quad \text { and } \quad k_{j}=c(n)[n(n-2)]^{-1} K\left(q_{j}\right)
$$

(3) $u(q) \leq C_{1}^{*}\{\operatorname{dist}(q, \mathcal{S}(u))\}^{-2 /(p-1)}$ for all $q \in \mathbb{S}_{-}^{3}$.

Proof. The proof follows from the uniqueness results of Caffarelli-GidasSpruck, and some blow up argument. We omit the details. The argument is similar to that in $[\mathrm{Z}]$, taking into account the proof of Proposition 2.1 here.

Proposition 2.6. Suppose that $K \in C^{0,1}\left(\overline{\mathbb{S}_{-}^{3}}\right)$ satisfies (2.13) for some positive constants A_{1}, A_{2}. Then for any $\varepsilon>0$ and $R>1$, there exists some positive constant $\delta^{*}=\delta^{*}\left(\varepsilon, R, A_{1}, A_{2}\right)$ such that for any solution u of (2.11) with $\max _{\overline{\mathbb{S}_{-}^{3}}} u>C_{0}^{*}$ we have

$$
\left|q_{j}-q_{l}\right| \geq \delta^{*} \quad \text { for all } 1 \leq j \neq l \leq k
$$

where $q_{j}=q_{j}(u), q_{l}=q_{l}(u)$, and $k=k(u)$ are defined in Proposition 2.5.
Proof. The proof is similar to the proof of Proposition 4.2 of [L1]. As always we often pass to subsequences when necessary. Suppose the contrary: for some constants $A_{1}, A_{2}, \varepsilon>0$ and $R>1$, there exists a sequence $\left\{K_{i}\right\} \in C^{0,1}\left(\overline{\mathbb{S}_{-}^{3}}\right)$ satisfying (2.13), and a sequence $\left\{u_{i}\right\}$ of solutions of (2.11) corresponding to $\left\{K_{i}\right\}$ satisfying

$$
\max _{\overline{\mathbb{S}}_{-}^{3}} u_{i}>C_{0}^{*}, \quad \min _{1 \leq j \neq l \leq k}\left|q_{j}-q_{l}\right| \rightarrow 0^{+}
$$

Without loss of generality,

$$
\left|q_{1}-q_{2}\right|=\min _{1 \leq j \neq l \leq k}\left|q_{j}-q_{l}\right|, \quad q_{1}, q_{2} \rightarrow \bar{q} \in \overline{\mathbb{S}_{-}^{3}}
$$

Using (2) of Proposition 2.5, we know that $R u_{i}\left(q_{1}\right)^{-\left(p_{i}-1\right) / 2}, R u_{i}\left(q_{2}\right)^{-\left(p_{i}-1\right) / 2} \leq$ $\left|q_{1}-q_{2}\right|$. It follows that $u_{i}\left(q_{1}\right), u_{i}\left(q_{2}\right) \rightarrow \infty$. By making a suitable stereographic projection to transform \mathbb{S}_{-}^{3} to $\mathbb{R}_{+}^{3}, u_{i}$ is transformed to v_{i} which satisfies

$$
\begin{cases}-\Delta v_{i}=\frac{1}{8} K_{i} H_{i}^{\tau_{i}} v_{i}^{p_{i}}, & v_{i}>0, \tag{2.14}\\ \text { in } \mathbb{R}_{+}^{3} \\ \partial v_{i} / \partial y_{3}=0 & \text { on } \partial \mathbb{R}_{+}^{3}\end{cases}
$$

where $H_{i}(y)=\left(2 /\left(1+|y|^{2}\right)\right)^{(n-2) / 2}$. We can assume without loss of generality that

$$
\begin{align*}
& v_{i}(q) \leq C_{1}^{*} \min _{1 \leq j \leq k}\left|q-q_{j}\right|, \quad \forall q \in \mathbb{R}_{+}^{3} \\
& q_{1}, q_{2} \text { are local maxima of } v_{i} \tag{2.15}\\
& \sigma_{i} \equiv\left|q_{1}-q_{2}\right|=\min _{1 \leq j \neq l \leq k}\left|q_{j}-q_{l}\right| \rightarrow 0^{+}, \quad q_{1}, q_{2} \rightarrow \bar{q} \in \overline{\mathbb{R}_{+}^{3}}
\end{align*}
$$

Notice that we have abused notation slightly by not distinguishing points in \mathbb{S}_{-}^{3} from points in \mathbb{R}_{+}^{3}. Also we need to reselect points q_{1}, q_{2} in order to satisfy (2.15) since this property is not preserved by stereographic projection. With the help of Proposition 2.1, this can be easily achieved by going to a subsequence.

Set

$$
w_{i}(y)=\sigma_{i}^{2 /\left(p_{i}-1\right)} v_{i}\left(q_{1}+\sigma_{i} y\right), \quad|y|<2 / \sigma_{i}, y_{3} \geq T_{i}
$$

where $-\sigma_{i} T_{i}$ is the third coordinate component of q_{1}. It is clear that w_{i} satisfies

$$
\begin{cases}-\Delta w_{i}(y)=\frac{1}{8} \widetilde{K}_{i}(y) \widetilde{H}_{i}(y)^{\tau_{i}} w_{i}(y)^{p_{i}}, & |y| \leq 2 / \sigma_{i}, y_{3} \geq T_{i} \\ w_{i}(y)>0, & |y| \leq 2 / \sigma_{i}, y_{3} \geq T_{i}\end{cases}
$$

where $\widetilde{K}_{i}(y)=K_{i}\left(\sigma_{i} y\right)$ and $\widetilde{H}_{i}(y)=H_{i}\left(\sigma_{i} y\right)$.
The following properties can be deduced from properties of v_{i} and Proposition 2.1:

$$
\begin{cases}w_{i}(0), w_{i}\left(\widetilde{y}_{i}\right) \geq 1 / C, & \nabla w_{i}(0)=\nabla w_{i}\left(\tilde{y}_{i}\right)=0 \\ |y|^{2 /\left(p_{i}-1\right)} w_{i}(y) \leq C_{1}, & |y| \leq 1 / 2, y_{3} \geq T_{i} \\ \left|y-\widetilde{y}_{i}\right|^{2 /\left(p_{i}-1\right)} w_{i}(y) \leq C_{1}, & \left|y-\widetilde{y}_{i}\right| \leq 1 / 2, y_{3} \geq T_{i}\end{cases}
$$

where $\widetilde{y}_{i}=\left(\widetilde{y}_{i 1}, \widetilde{y}_{i 2}, \widetilde{y}_{i 3}\right)=\left(q_{2}-q_{1}\right) / \sigma_{i}$. It is not difficult to see that $w_{i}(0), w_{i}\left(\tilde{y}_{i}\right)$ $\rightarrow \infty$, since otherwise they both have to have finite limits and after passing to the limit, lead to a positive solution of $-\Delta w=w^{(n+2) /(n-2)}$ in the upper half plane with two critical points. This violates the uniqueness theorem of [CGS]. Therefore $\{0\}$ and $\widetilde{y}_{i} \rightarrow \widetilde{y}$ are both isolated blow up points of $\left\{w_{i}\right\}$, hence isolated simple blow up points due to Proposition 3.1 of [L1] and Proposition 2.4. By multiplying the equation by $w_{i}(0)$, it follows from Proposition 2.3 and the maximum principle (see the proof of Proposition 4.2 in [L1]) that there exists a closed set $\mathcal{S}_{2} \subset \mathbb{R}_{+}^{3}$ containing neither $\{0\}$ nor $\{\widetilde{y}\}$, and some function $b^{*} \in C^{\infty}\left(\overline{\mathbb{R}_{+}^{3}} \backslash \mathcal{S}_{2}\right)$ satisfying $\Delta b^{*}=0$ and $b^{*} \geq 0$ on $\mathbb{R}_{+}^{3} \backslash \mathcal{S}_{2}$ such that

$$
\lim _{i \rightarrow \infty} w_{i}(0) w_{i}(y)=h^{*}(y) \equiv a_{1}|y|^{2-n}+a_{2}|y-\widetilde{y}|^{2-n}+b^{*}(y) \quad \text { in } C_{\mathrm{loc}}^{2}\left(\overline{\mathbb{R}_{+}^{3}} \backslash \mathcal{S}_{2}\right)
$$

where $a_{1}, a_{2}>0$ are some constants. In particular, for some constant $b>0$,

$$
h^{*}(y)=a_{1}|y|^{2-n}+b+O(|y|) \quad \text { for } y \text { close to } 0 .
$$

Applying Lemma 1.1 (or Corollary 1.1 of [L1]) as in the proof of Proposition 2.4, we reach a contradiction.

Proof of Theorem 2.1. Let $\left\{u_{i}\right\}$ satisfy $\max _{\overline{\mathbb{S}^{3}}} u_{i} \rightarrow \infty$. After passing to a subsequence, it follows from Propositions 2.6 and 2.4 that $\left\{u_{i}\right\}$ has finitely many isolated simple blow up points, denoted as $\left\{\bar{q}^{(1)}, \ldots, \bar{q}^{(k)}\right\}$. Let $q_{i}^{(j)} \rightarrow$ $\bar{q}^{(j)}$ be the local maximum of u_{i} as stated in Definition 2.2. We know from Proposition 2.5, and Proposition 3.2 of [L1], that $\lim _{i \rightarrow \infty}\left|\nabla K_{i}\left(q_{i}^{(j)}\right)\right|=0$ if $\bar{q}^{(j)} \in$ \mathbb{S}_{-}^{3}, and $\lim _{i \rightarrow \infty}\left|\nabla_{\tan } K_{i}\left(q_{i}^{(j)}\right)\right|=0$ if $\bar{q}^{(j)} \in \partial \mathbb{S}_{-}^{3}$. It follows from Proposition 2.3 and some standard elliptic theory that

$$
u_{i}\left(q_{i}^{(1)}\right) u_{i} \rightarrow h \equiv \sum_{j=1}^{k} a_{j}\left(G_{\bar{q}^{(j)}}+G_{\hat{q}^{(j)}}\right) \quad \text { in } C_{\mathrm{loc}}^{2}\left(\overline{\mathbb{S}_{-}^{3}} \backslash\left\{\bar{q}^{(1)}, \ldots, \bar{q}^{(k)}\right\}\right),
$$

where $a_{1}, \ldots, a_{k}>0$ are some constants, $\widehat{q}^{(j)} \in \overline{\mathbb{S}_{+}^{3}}$ denotes the symmetric point of $\bar{q}^{(j)}$, and $G_{\bar{q}^{(j)}}$ denotes the Green function of $-\Delta_{g_{0}}+\frac{3}{4}$ at $\bar{q}^{(j)}$.

We first show that $\left\{\bar{q}^{(1)}, \ldots, \bar{q}^{(k)}, \widehat{q}^{(1)}, \ldots, \widehat{q}^{(k)}\right\}$ consists of precisely one point. Suppose the contrary; it follows from the positivity of the Green function that for some constants $a, b>0$,

$$
h(q)=a G_{\bar{q}^{(1)}}+b+O\left(\left|q-\bar{q}^{(1)}\right|\right)
$$

Applying the Pokhozhaev type identity as in the proof of Proposition 2.4, we reach a contradiction. This shows that $\left\{u_{i}\right\}$ has precisely one boundary isolated simple blow up point. By making a suitable stereographic projection to transform \mathbb{S}_{-}^{3} to \mathbb{R}_{+}^{3} and q_{i} to $0, u_{i}$ is transformed to v_{i} which satisfies (2.14). Applying Lemma 1.1, we obtain

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{3}} y \cdot \nabla\left(K_{i} H_{i}^{\tau_{i}}\right) v_{i}^{p_{i}}+\frac{\tau_{i}}{2} \int_{\mathbb{R}_{+}^{3}} K_{i} H_{i}^{\tau_{i}} v_{i}^{p_{i}+1}=0 \tag{2.16}
\end{equation*}
$$

Using Lemma 2.4, Lemma 2.3 and Proposition 2.5, we have

$$
\int_{\mathbb{R}_{+}^{3}} y \cdot \nabla\left(K_{i} H_{i}^{\tau_{i}}\right) v_{i}^{p_{i}}=\frac{\partial K_{i}}{\partial y_{3}}(0) \int_{\mathbb{R}_{+}^{3}} y_{3} v_{i}^{p_{i}}+o\left(v_{i}(0)^{-2}\right) .
$$

Estimate (2.12) follows from the above, (2.16) and Lemma 2.3.

3. Proof of Theorem 0.1

We define $H=\left\{u \in H^{1}\left(\mathbb{S}^{3}\right) \mid u\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=u\left(x_{1}, x_{2}, x_{3},-x_{4}\right)\right\}$, and the inner product and norm by $\langle u, v\rangle=\int_{\mathbb{S}^{3}}\left(\nabla u \nabla v+\frac{3}{4} u v\right)$ and $\|u\|=\sqrt{\langle u, u\rangle}$ respectively. For $\tau>0$ small, we set

$$
I_{\tau}(u)=\frac{1}{2}\|u\|^{2}-\frac{1}{8(6-\tau)} \int_{\mathbb{S}^{3}} K|u|^{6-\tau} .
$$

For $P \in \mathbb{S}^{3}$ and $t>0$, we define

$$
\delta_{P, t}(x)=\left(\frac{t}{1+\frac{t^{2}-1}{2}(1-\cos d(P, x))}\right)^{1 / 2}, \quad x \in \mathbb{S}^{3}
$$

where $d(P, x)$ denotes the geodesic distance between $P, x \in \mathbb{S}^{3}$. It is well known that $\delta_{P, t}$ satisfies

$$
-\Delta_{g_{0}} \delta_{P, t}+\frac{3}{4} \delta_{P, t}=\frac{3}{4} \delta_{P, t}^{5},
$$

and

$$
\left\|\delta_{P, t}\right\|^{2}=\frac{3}{4}\left|\mathbb{S}^{3}\right|, \quad \int_{\mathbb{S}^{3}} \delta_{P, t}^{6}=\left|\mathbb{S}^{3}\right|
$$

For $\bar{P} \in \mathcal{K}^{-}$and $\varepsilon_{0}>0$ suitably small, let

$$
\begin{aligned}
\Omega_{\varepsilon_{0}}(\bar{P})=\left\{(\alpha, t, P) \in \mathbb{R}_{+} \times \mathbb{R}_{+} \times \partial \mathbb{S}_{-}^{3}| | \alpha-(6 / K(P))^{1 / 4} \mid\right. & <\varepsilon_{0} \\
|P-\bar{P}| & \left.<\varepsilon_{0}, t>1 / \varepsilon_{0}\right\}
\end{aligned}
$$

It follows from $[\mathrm{BC}]$ that for any $u \in H$ satisfying $\left\|u-\widetilde{\alpha} \delta_{\widetilde{P}, \tilde{t}}\right\|<\varepsilon_{0} / 2$, for some $(\widetilde{\alpha}, \widetilde{t}, \widetilde{P}) \in \Omega_{\varepsilon_{0} / 2}$, we have a unique representation

$$
u=\alpha \delta_{P, t}+v
$$

with $(\alpha, t, P) \in \Omega_{\varepsilon_{0}}$ and

$$
\begin{equation*}
\left\langle v, \delta_{P, t}\right\rangle=\left\langle v, \frac{\partial \delta_{P, t}}{\partial P^{(l)}}\right\rangle=\left\langle v, \frac{\partial \delta_{P, t}}{\partial t}\right\rangle=0 \tag{3.1}
\end{equation*}
$$

We work in some orthonormal basis near \bar{P}, and $\partial / \partial P^{(l)}$ denotes the corresponding derivatives. By uniqueness, we know that $P \in \partial \mathbb{S}_{-}^{3}$, and hence $v \in H$. We denote the set of $v \in H$ satisfying (3.1) by $E_{t, P}$. It follows that in a small tubular neighborhood (independent of τ) of $\left\{\alpha \delta_{P, t} \mid(\alpha, t, P) \in \Omega_{\varepsilon_{0} / 2}\right\}$ in $H,(\alpha, t, P, v)$ is a good parametrization. In the new parameters, we write

$$
J_{\tau}(\alpha, t, P, v)=I_{\tau}(u) \quad \text { for } u=\alpha \delta_{P, t}+v
$$

For a suitably large constant A and suitably small constants ε_{0}, ν_{0}, set

$$
\Sigma_{\tau}(\bar{P})=\left\{(\alpha, t, P, v) \in \Omega_{\varepsilon_{0} / 2} \times H \mid 1 / A<t \tau<A, v \in E_{t, P},\|v\|<\nu_{0}\right\}
$$

Without confusion we use the same notation for

$$
\Sigma_{\tau}(\bar{P})=\left\{u=\alpha \delta_{P, t}+v \mid(\alpha, t, P, v) \in \Sigma_{\tau}(\bar{P})\right\}
$$

Proposition 3.1. For $K \in \mathcal{A} \cap C^{2}\left(\overline{\mathbb{S}_{-}^{3}}\right)$, assume that $\left.K\right|_{\partial \mathbb{S}_{-}^{3}}$ is a Morse function. Let $0<\alpha<1$. Then there exist some positive constants $\varepsilon_{0}, \nu_{0} \ll 1$ and $A, R \gg 1$, depending only on K and α, such that, when $\tau>0$ is sufficiently small,

$$
u \in \mathcal{O}_{R} \equiv\left\{w \in C^{2, \alpha}\left(\overline{\mathbb{S}_{-}^{3}}\right) \mid 1 / R<w<R \text { on } \mathbb{S}_{-}^{3},\|w\|_{C^{2, \alpha}\left(\mathbb{S}_{-}^{3}\right)}<R\right\}
$$

or $u \in \Sigma_{\tau}(\bar{P})$ for some $\bar{P} \in \mathcal{K}^{-}$, for all u satisfying $u \in H, u>0$ a.e., and $I_{\tau}^{\prime}(u)=0$.

Proof. This follows from Theorem 2.1, Proposition 2.3, and some standard elliptic estimates.

Theorem 3.1. For $K \in \mathcal{A} \cap C^{2}\left(\overline{\mathbb{S}_{-}^{3}}\right)$, assume that $\left.K\right|_{{\underset{\mathbb{S}}{-}}_{3}}$ is a Morse function. Then for $\tau>0$ sufficiently small, and $\bar{P} \in \mathcal{K}^{-}$, I_{τ} has a unique critical point in $\Sigma_{\tau}(\bar{P})$, which is nondegenerate with Morse index $3-i(\bar{P})$. It follows that

$$
\begin{equation*}
\operatorname{deg}_{H^{1}}\left(I_{\tau}^{\prime}, \Sigma_{\tau}(\bar{P}), 0\right)=(-1)^{3-i(\bar{P})} \tag{3.2}
\end{equation*}
$$

Here $i(\bar{P})$ denotes the Morse index of $\left.K\right|_{\partial \mathbb{S}_{-}^{3}}$ at \bar{P}.

Proposition 3.2. For $\tau>0$ small and $(\alpha, t, P, 0) \in \Sigma_{\tau}(\bar{P})$ with $\bar{P} \in \mathcal{K}^{-}$, there exists a unique minimizer $\bar{v}=\bar{v}_{\tau}(\alpha, t, P) \in E_{t, P}$ of $J_{\tau}(\alpha, t, P, v)$. Furthermore,

$$
\|\bar{v}\| \leq C \tau|\log \tau|, \quad\left\langle\partial_{v} J_{\tau}(\alpha, t, P, v), v\right\rangle \neq 0, \quad \forall(\alpha, t, P, v) \in \Sigma_{\tau}(\bar{P}), v \neq \bar{v}
$$

and $(\tau, \alpha, t, P) \mapsto \bar{v}_{\tau}(\alpha, t, P)$ is a C^{2} map to H.
Proof. It follows from a direct calculation, using (3.1), that

$$
J_{\tau}(\alpha, t, P, v)=\frac{3\left|\mathbb{S}^{3}\right| \alpha^{2}}{8}-\frac{\alpha^{6-\tau}}{8(6-\tau)} \int_{\mathbb{S}^{3}} K \delta_{P, t}^{6-\tau}+f_{\tau}(v)+Q_{\tau}(v, v)+O\left(\|v\|^{3}\right)
$$

where

$$
\begin{gathered}
f_{\tau}(v)=-\frac{\alpha^{5-\tau}}{8} \int_{\mathbb{S}^{3}} K \delta_{P, t}^{5-\tau} v \\
Q_{\tau}(\varphi, v)=\frac{1}{2}\langle\varphi, v\rangle-\frac{(5-\tau) \alpha^{4-\tau}}{16} \int_{\mathbb{S}^{3}} K \delta_{P, t}^{4-\tau} \varphi v .
\end{gathered}
$$

It is well known that for some $\delta_{0}>0, Q_{0}(v, v) \geq \delta_{0}\|v\|^{2}$ for all $v \in E_{t, P}$. It follows, after some elementary calculations, that for $\tau>0$ small we have

$$
Q_{\tau}(v, v) \geq\left(\delta_{0} / 2\right)\|v\|^{2}, \quad \forall(\alpha, t, P, v) \in \Sigma_{\tau}(\bar{P})
$$

Using (3.1), the Sobolev embedding theorem and Lemma A in the Appendix, we have

$$
\begin{aligned}
f_{\tau}(v) & =-\frac{\alpha^{5-\tau}}{8} \int_{\mathbb{S}^{3}}[K-K(P)] \delta_{P, t}^{5} v+O\left(\left\|\delta_{P, t}^{5}-\delta_{P, t}^{5-\tau}\right\|_{L^{6 / 5}}\|v\|\right) \\
& =O\left(\left\||\cdot-P| \delta_{P, t}^{5}\right\|_{L^{6 / 5}}+\left\|\delta_{P, t}^{5}-\delta_{P, t}^{5-\tau}\right\|_{L^{6 / 5} 5}\right)\|v\| \\
& =O(\tau|\log \tau|)\|v\| .
\end{aligned}
$$

It follows that $\left\|f_{\tau}\right\|=O(\tau|\log \tau|)$. The existence, uniqueness and C^{2} dependence of the minimizer $\bar{v}=\bar{v}_{\tau}(\alpha, t, P)$ as stated in Proposition 3.2 follow from standard functional analysis arguments.

Proof of Theorem 3.1. We will only prove (3.2). The full strength of Theorem 3.1 can be proved by some further essentially elementary, even though somewhat tedious, argument. Set $\beta=\alpha-(6 / K(P))^{1 / 4}$. It follows from (3.1)
and Lemma A in the Appendix that
(3.3) $\quad \frac{\partial}{\partial \alpha} J_{\tau}(\alpha, t, P, v)$

$$
\begin{aligned}
= & \frac{3\left|\mathbb{S}^{3}\right| \alpha}{4}-\frac{1}{8} \alpha^{5-\tau} \int_{\mathbb{S}^{3}} K \delta_{P, t}^{6-\tau}-\frac{(5-\tau) \alpha^{4-\tau}}{8} \int_{\mathbb{S}^{3}} K \delta_{P, t}^{5-\tau} v+O\left(\|v\|^{2}\right) \\
= & \frac{3\left|\mathbb{S}^{3}\right| \alpha}{4}-\frac{1}{8} \alpha^{5-\tau} K(P) \int_{\mathbb{S}^{3}} \delta_{P, t}^{6}+O\left(\left\||\cdot-P| \delta_{P, t}^{6-\tau}\right\|_{L^{1}}\right)+O\left(\left\|\delta_{P, t}^{6}-\delta_{P, t}^{6-\tau}\right\|_{L^{1}}\right) \\
& +O\left(\left\||\cdot-P| \delta_{P, t}^{5-\tau}\right\|_{L^{6 / 5}}\|v\|\right)+O\left(\left\|\delta_{P, t}^{5}-\delta_{P, t}^{5-\tau}\right\|_{L^{6 / 5}}\|v\|\right)+O\left(\|v\|^{2}\right) \\
= & -3\left|\mathbb{S}^{3}\right| \beta+O(\tau|\log \tau|)+O\left(\beta^{2}\right)+O\left(\|v\|^{2}\right)
\end{aligned}
$$

Similarly, noticing that several integrals vanish due to oddness with respect to certain directions, e.g., $\int_{\mathbb{S}^{3}} \delta_{P, t}^{5-\tau} \frac{\partial \delta_{P, t}}{\partial P}=0$, we have

$$
\begin{align*}
\frac{\partial}{\partial P} J_{\tau} & (\alpha, t, P, v) \tag{3.4}\\
& =-\frac{\alpha^{6-\tau}}{4} \int_{\mathbb{S}_{-}^{3}} K \delta_{P, t}^{5-\tau} \frac{\partial \delta_{P, t}}{\partial P}+O(\|v\|) \\
& =-\frac{\alpha^{6-\tau}}{4} \int_{\mathbb{S}_{-}^{3}}[K-K(P)] \delta_{P, t}^{5-\tau} \frac{\partial \delta_{P, t}}{\partial P}+O(\|v\|) \\
& =-\frac{\alpha^{6-\tau}}{4} \int_{\mathbb{S}_{-}^{3}} \nabla K(P) \cdot(\cdot-P) \delta_{P, t}^{5-\tau} \frac{\partial \delta_{P, t}}{\partial P}+O(1 / t)+O(\|v\|) \\
& =-\Gamma K(P)^{-3 / 2} \nabla_{\tan } K(P)+O(1 / t)+O(|\beta|)+O(\|v\|) .
\end{align*}
$$

Here and throughout the paper, $\Gamma>0$ denotes various universal constants. Set

$$
\widetilde{\Sigma}_{\tau}=\left\{u=\alpha \delta_{P, t}+\left.v \in \Sigma_{\tau}|\|v\|<\tau| \log \tau\right|^{3},|\beta|<\tau|\log \tau|^{2}\right\} .
$$

Using Proposition 3.1, Proposition 3.2 and (3.3), we know that $I_{\tau}^{\prime}(u) \neq 0$ for all $u \in \Sigma_{\tau} \backslash \widetilde{\Sigma}_{\tau}$. In the following, we only make calculations for $u=\alpha \delta_{P, t}+v \in \widetilde{\Sigma}_{\tau}$.

A calculation yields

$$
\begin{aligned}
\frac{\partial}{\partial t} J_{\tau}(\alpha, t, P, v)= & -\frac{\alpha}{8} \int_{\mathbb{S}^{3}} K\left|\alpha \delta_{P, t}+v\right|^{4-\tau}\left(\alpha \delta_{P, t}+v\right) \frac{\partial \delta_{P, t}}{\partial t} \\
= & -\frac{\alpha}{8} \int_{\mathbb{S}^{3}} K\left\{\left(\alpha \delta_{P, t}\right)^{5-\tau}+(5-\tau)\left(\alpha \delta_{P, t}\right)^{4-\tau} v\right\} \frac{\partial \delta_{P, t}}{\partial t} \\
& +O\left(\|v\|^{2}\left\|\frac{\partial \delta_{P, t}}{\partial t}\right\|\right) .
\end{aligned}
$$

Noticing that $\int_{\mathbb{S}^{3}} \delta_{P, t}^{4} v \frac{\partial \delta_{P, t}}{\partial t}=\frac{1}{5} \frac{\partial}{\partial t} \int_{\mathbb{S}^{3}} \delta_{P, t}^{5} v=0$, we have

$$
\begin{array}{rl}
\int_{\mathbb{S}^{3}} K & K \delta_{P, t}^{4-\tau} v \frac{\partial \delta_{P, t}}{\partial t} \\
& =\int_{\mathbb{S}^{3}}[K-K(P)] \delta_{P, t}^{4-\tau} v \frac{\partial \delta_{P, t}}{\partial t}+\int_{\mathbb{S}^{3}} K(P)\left[\delta_{P, t}^{4-\tau}-\delta_{P, t}^{4}\right] v \frac{\partial \delta_{P, t}}{\partial t} \\
& =O\left(\left\||\cdot-P| \delta_{P, t}^{4-\tau}\right\|_{L^{3 / 2}}\|v\|\left\|\frac{\partial \delta_{P, t}}{\partial t}\right\|\right)+O\left(\left\|\delta_{P, t}^{4}-\delta_{P, t}^{4-\tau}\right\|_{L^{3 / 2}}\|v\|\left\|\frac{\partial \delta_{P, t}}{\partial t}\right\|\right) \\
& =o\left(t^{-2}\right) .
\end{array}
$$

It follows from the above and from $6 \int_{\mathbb{S}^{3}} \delta_{P, t}^{5} \frac{\partial \delta_{P, t}}{\partial t}=\frac{\partial}{\partial t} \int_{\mathbb{S}^{3}} \delta_{P, t}^{6}=0$ that

$$
\begin{align*}
& \frac{\partial}{\partial t} J_{\tau}(\alpha, t, P, v) \tag{3.5}\\
&=-\frac{\alpha^{6-\tau}}{4} \int_{\mathbb{S}_{-}^{3}} K \delta_{P, t}^{5-\tau} \frac{\partial \delta_{P, t}}{\partial t}+o\left(t^{-2}\right) \\
&=-\frac{\alpha^{6-\tau}}{4} \int_{\mathbb{S}_{-}^{3}}[K(P)+\nabla K(P) \cdot(\cdot-P)] \delta_{P, t}^{5-\tau} \frac{\partial \delta_{P, t}}{\partial t} \\
&+O\left(\left\||\cdot-P|^{2} \delta_{P, t}^{5-\tau}\right\|_{L^{6 / 5}}\left\|\frac{\partial \delta_{P, t}}{\partial t}\right\|\right)+o\left(t^{-2}\right) \\
&=-K(P) \frac{\alpha^{6-\tau}}{4} \int_{\mathbb{S}_{-}^{3}} \delta_{P, t}^{5-\tau} \frac{\partial \delta_{P, t}}{\partial t} \\
&+\frac{\alpha^{6-\tau}}{4} \frac{\partial K}{\partial \nu}(P) \int_{\mathbb{S}_{-}^{3}}\left|(\cdot-P)_{4}\right| \delta_{P, t}^{5-\tau} \frac{\partial \delta_{P, t}}{\partial t}+o\left(t^{-2}\right) \\
&= \Gamma \sqrt{K(P)} \frac{\tau}{t}-\Gamma K(P)^{-3 / 2} \frac{\partial K}{\partial \nu}(P) t^{-2}+O\left(|\beta| t^{-2}\right)+o\left(t^{-2}\right)
\end{align*}
$$

At $u=\alpha \delta_{P, t}+v \in \widetilde{\Sigma}_{\tau}$,

$$
T_{u} H=E_{t, P} \oplus \operatorname{span}\left\{\delta_{P, t}, \frac{\partial \delta_{P, t}}{\partial t}, \frac{\partial \delta_{P, t}}{\partial P}\right\} .
$$

We write $I_{\tau}^{\prime}(u) \in T_{u} H$ as

$$
I_{\tau}^{\prime}(u)=\xi+\eta,
$$

where $\xi \in E_{t, P}$ and $\eta \in \operatorname{span}\left\{\delta_{P, t}, \partial \delta_{P, t} / \partial t, \partial \delta_{P, t} / \partial P\right\}$. For all $\varphi \in E_{t, P}$,

$$
\langle\xi, \varphi\rangle=I_{\tau}^{\prime}(u) \varphi=f_{\tau}(\varphi)+2 Q_{\tau}(\varphi, v)+\left\langle V_{v}(\tau, \alpha, t, P, v), \varphi\right\rangle
$$

where V_{v} is some function satisfying $\left\|V_{v}(\tau, \alpha, t, P, v)\right\| \leq C\|v\|^{2}$. Taking $\varphi=v$, we get

$$
\|\xi\| \geq \delta_{0}\|v\|-\left\|f_{\tau}\right\|-O\left(\|v\|^{2}\right) \geq \frac{\delta_{0}}{2}\|v\|-\left\|f_{\tau}\right\| .
$$

It follows from (3.3) that

$$
\left\langle\eta, \delta_{P, t}\right\rangle=\frac{\partial}{\partial \alpha} I_{\tau}(u)=-3\left|\mathbb{S}^{3}\right| \beta+V_{\alpha}(\tau, \alpha, t, P, v)
$$

where V_{α} satisfies $\left|V_{\alpha}(\tau, \alpha, t, P, v)\right| \leq C \tau|\log \tau|$. It follows from (3.5) that
$\left\langle\eta, \frac{\partial \delta_{P, t}}{\partial t}\right\rangle=\frac{1}{\alpha} \frac{\partial}{\partial t} I_{\tau}(u)=\Gamma K(P)^{3 / 4} \frac{\tau}{t}-\Gamma K(P)^{-5 / 4} \frac{\partial K}{\partial \nu}(P) t^{-2}+V_{t}(\tau, \alpha, t, P, v)$,
where V_{t} satisfies $\left|V_{t}(\tau, \alpha, t, P, v)\right|=o\left(t^{-2}\right)$. It follows from (3.4) that

$$
\left\langle\eta, \frac{\partial \delta_{P, t}}{\partial P}\right\rangle=\frac{1}{\alpha} \frac{\partial}{\partial P} I_{\tau}(u)=-\Gamma K(P)^{-5 / 4} \nabla_{\tan } K(P)+V_{P}(\tau, \alpha, t, P, v)
$$

where V_{P} satisfies $\left|V_{P}(\tau, \alpha, t, P, v)\right|=C(\tau+|\beta|+\|v\|)=o(1)$.
It is well known that $I_{\tau}^{\prime}(u)=\xi+\eta$ is of the form id + compact in H. We first define $P(\theta)$ as the geodesic trajectory on $\partial \mathbb{S}_{-}^{3}$ with $P(1)=P$ and $P(0)=\bar{P}$. Define

$$
X_{\theta}=\xi_{\theta}+\eta_{\theta}, \quad 0 \leq \theta \leq 1,
$$

as follows. For all $\varphi \in E_{t, P}, 0 \leq \theta \leq 1$,

$$
\begin{aligned}
\left\langle\xi_{\theta}, \varphi\right\rangle & =\theta f_{\tau}(\varphi)+(1-\theta)\langle v, \varphi\rangle+2 \theta Q_{\tau}(\varphi, v)+\theta\left\langle V_{v}(\tau, \alpha, t, P, v), \varphi\right\rangle, \\
\left\langle\eta_{\theta}, \delta_{P, t}\right\rangle & =-3\left|\mathbb{S}^{3}\right| \beta+\theta V_{\alpha} \\
\left\langle\eta_{\theta}, \frac{\partial \delta_{P, t}}{\partial t}\right\rangle & =\Gamma K(P(\theta))^{3 / 4} \frac{\tau}{t}-\Gamma K(P(\theta))^{-5 / 4} \frac{\partial K}{\partial \nu}(P(\theta)) t^{-2}+\theta V_{t}, \\
\left\langle\eta, \frac{\partial \delta_{P, t}}{\partial P}\right\rangle & =-\Gamma K(P(\theta))^{-5 / 4} \nabla_{\tan } K(P)+t V_{P}
\end{aligned}
$$

It is easy to see that X_{θ} is well defined in $\widetilde{\Sigma}_{\tau}$. It follows from the Sobolev compact embedding theorem, the explicit form of $V_{v}, V_{\alpha}, V_{t}, V_{P}, A^{-1}<t \tau<A$, and the estimates we have obtained that X_{θ} is of the form id + compact. Furthermore, it is not difficult to see that $X_{\theta}(0 \leq \theta \leq 1)$ is an admissible homotopy with $\left.X_{\theta}\right|_{\partial \widetilde{\Sigma}_{\tau}} \neq 0$. It follows that

$$
\operatorname{deg}_{H^{1}}\left(X_{1}, \widetilde{\Sigma}_{\tau}, 0\right)=\operatorname{deg}_{H^{1}}\left(X_{0}, \widetilde{\Sigma}_{\tau}, 0\right)
$$

It is easy to see that

$$
\operatorname{deg}_{H^{1}}\left(X_{0}, \widetilde{\Sigma}_{\tau}, 0\right)=(-1)^{3-i(\bar{P})}
$$

We have thus established (3.2).
Proof of Theorem 0.1 (and the justification of the definition of Index: $\mathcal{A} \rightarrow \mathbb{Z}$). Part (a) follows from Theorem 2.1. For $K \in \mathcal{A} \cap C^{2}\left(\overline{\mathbb{S}_{-}^{3}}\right),\left.K\right|_{\partial_{-}^{3}}$ being a Morse function, (0.3) follows from Theorem 3.1 and properties of the Leray-Schauder degree as in [L2]. Now the definition of Index can be justified by the above and the homotopy invariance of the Leray-Schauder degree. For
the same reason, (0.3) holds for all $K \in \mathcal{A}$. Part (b) can be derived from (a) by an argument similar to that in [L3].

Appendix

Lemma A. Let $A>1$ be some positive constant, $\tau>0$, and $1 / A<t \tau<A$. Then

$$
\begin{gathered}
\left\||\cdot-P| \delta_{P, t}^{5}\right\|_{L^{6 / 5}\left(\mathbb{S}^{3}\right)} \leq C / t, \quad\left\||\cdot-P| \delta_{P, t}^{5-\tau}\right\|_{L^{6 / 5}\left(\mathbb{S}^{3}\right)} \leq C / t, \\
\int_{\mathbb{S}^{3}}|\cdot-P|^{a} \delta_{P, t}^{6-\tau}= \begin{cases}\Gamma t^{-\tau / 2}+o(1), & a=0, \\
\Gamma t^{-a}+o\left(t^{-a}\right), & 0<a<3,\end{cases} \\
\int_{\mathbb{S}^{3}}|\cdot-P|^{a} \delta_{P, t}^{6}=\Gamma t^{-a}+o\left(t^{-a}\right), \quad 0<a<3, \\
\int_{\mathbb{S}^{3}} \delta_{P, t}^{6}\left|1-\delta_{P, t}^{-\tau}\right|^{a} \leq C(a)(\tau|\log \tau|)^{a}, \quad 0 \leq a<3, \\
\left\|\frac{\partial \delta_{P, t}}{\partial t}\right\|=\Gamma / t, \quad \int_{\mathbb{S}^{3}} \delta_{P, t}^{5-\tau} \frac{\partial \delta_{P, t}}{\partial t}=-\Gamma \tau / t+o(\tau / t), \\
\int_{\mathbb{S}^{3}}\left|(\cdot-P)_{4}\right| \delta_{P, t}^{5-\tau} \frac{\partial \delta_{P, t}}{\partial t}=-\Gamma t^{-2}+o\left(t^{-2}\right), \\
\int_{\mathbb{S}^{3}}|\cdot-P|^{2} \delta_{P, t}^{5-\tau}\left|\frac{\partial \delta_{P, t}}{\partial P}\right| \leq C / t,
\end{gathered}
$$

where o(1) denotes some quantity which tends to 0 as tends to infinity, and C denotes some constant depending only on A. We also recall that $\Gamma>0$ denotes various universal constants.

Proof. This follows from straightforward calculations.

References

[A] T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations, SpringerVerlag, New York, 1982.
[B] A. BaHRI, An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, preprint.
[BC] A. Bahri and J. M. Coron, The scalar-curvature problem on standard threedimensional sphere, J. Funct. Anal. 95 (1991), 106-172.
[BLR] A. Bahri, Y. Y. Li and O. Rey, On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3 (1995), 67-93; also in preprint series of Centre de Mathématiques, Ecole Polytechnique, no. 1017, 1991.
[Bi1] G. Bianchi, Non-existence and symmetry of solutions to the scalar curvature equations, preprint.
[Bi2] \qquad , The scalar curvature equation on \mathbb{R}^{n} and \mathbb{S}^{n}, preprint.
[CGS] L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297.
[CGY] S. Y. Chang, M. J. Gursky and P. Yang, The scalar curvature equation on 2and 3-sphere, Calc. Var. Partial Differential Equations 1 (1993), 205-229.
[CY] S. Y. Chang and P. Yang, Conformal deformations of metrics on \mathbb{S}^{2}, J. Differential Geom. 27 (1988), 256-296.
[CD] W. X. Chen and W. Ding, Scalar curvature on \mathbb{S}^{2}, Trans. Amer. Math. Soc. 303 (1987), 365-382.
[CL1] W. X. Chen and C. Li, On Nirenberg and the related problems-a necessary and sufficient condition, Comm. Pure Appl. Math. 48 (1995), 657-667.
[CL2] , A priori estimates for prescribing scalar curvature equations, preprint.
[ChL] C. C. Chen and C. S. Lin, Estimates of the conformal scalar curvature equation via the method of moving planes, preprint.
[ES] J. Escobar and R. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math. 86 (1986), 243-254.
[H] Z. C. Han, Prescribing Gaussian curvature on \mathbb{S}^{2}, Duke Math. J. 61 (1990), 679-703.
[HL] Z. C. Han and Y. Y. Li, A note on the Kazdan-Warner type condition, Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear).
[KW] J. Kazdan and F. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature, Ann. of Math. 101 (1975), 317-331.
[L1] Y. Y. Li, Prescribing scalar curvature on \mathbb{S}^{n} and related problems, Part I, J. Differential Equations 120 (1995), 319-410.
[L2] , Prescribing scalar curvature on \mathbb{S}^{n} and related problems, Part II: Existence and compactness, Comm. Pure Appl. Math. (to appear).
[L3] , Multiple points blow up phenomenon in scalar curvature equations on spheres of dimension greater than three, a volume in memory of J. D'Atri, Birkhäuser (to appear).
[LL] J. Q. Liu and P. L. Li, Nirenberg's problem on the 2-dimensional hemi-sphere, Internat. J. Math. 4 (1993), 927-939.
[M] J. Moser, On a nonlinear problem in differential geometry, Dynamical Systems (M. Peixoto, ed.), Academic Press, New York, 1973, pp. 273-280.
[S] R. Schoen, On the number of constant scalar curvature metrics in a conformal class, Differential Geometry: A symposium in honor of Manfredo Do Carmo (H. B. Lawson and K. Tenenblat, eds.), Wiley, 1991, pp. 311-320.
[SZ] R. Schoen and D. Zhang, Prescribed scalar curvature on the n-sphere, preprint.
[Z] D. Zhang, New results on geometric variational problems, thesis, Stanford University, 1990.

YanYan Li
Department of Mathematics
Rutgers University
New Brunswick, NJ 08903, USA
E-mail address: yyli@math.mtgers.edu

