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CRITICAL POINTS WHEN THERE
IS NO SADDLE POINT GEOMETRY

Martin Schechter

Dedicated to Louis Nirenberg on the occasion of his 70th birthday

We show how mountain pass methods can be used even when there is no
mountain pass or saddle point geometry. The functional can grow on linking
subsets. Applications are given.

1. Introduction

The original saddle point theorem of Rabinowitz [R] can be described as
follows. Let M be a closed subspace of a Hilbert space H such that M 6= H and
N = M⊥ 6= H. Let G be a C1 functional on H such that

G(v) ≤ α, v ∈ N,(1.1)

G(w) ≥ α, w ∈ ∂Bδ ∩M,(1.2)

G(sw0 + v) ≤ mR, s ≥ 0, v ∈ N, ‖sw0 + v‖ = R,(1.3)

for some w0 ∈ ∂B1∩M , where 0 < δ < R and Br = {u ∈ H : ‖u‖ ≤ r}. A slight
generalization of Rabinowitz’s theorem is

Theorem 1.1. In addition to (1.1)–(1.3) assume

dimN <∞,(1.4)

mR ≤ α.(1.5)
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Then there are a sequence {uk} ⊂ H and a c ≥ α such that

(1.6) G(uk) → c, G′(uk) → 0.

Although (1.6) does not guarantee a solution of

(1.7) G′(u) = 0

it does so in many applications. Theorem 1.1 was generalized by Silva [Si] and
the author [Sc1–4] to

Theorem 1.2. If one replaces (1.5) in Theorem 1.1 by

(1.8) sup
R>δ

mR ≤ m <∞

then there is a sequence satisfying (1.6) with α ≤ c ≤ m.

In the present paper we derive theorems which imply

Theorem 1.3. Assume

(1.9) either dimN <∞ or dimM <∞,

(1.10) ψ(t) is a nondecreasing positive function with mR − α <
∫ R

0
ψ(t) dt.

Then for each δ > 0 there is a u ∈ H such that

(1.11) α− δ < G(u) < mR + δ, ‖G′(u)‖ < ψ(‖u‖+ δ).

Corollary 1.4. If β ≥ 0 and

(1.12) mR/R
β+1 → 0 as R→∞

then there is a {uk} ⊂ H such that

(1.13) ‖G′(uk)‖/(‖uk‖+ 1)β → 0, G(uk) → c, α ≤ c ≤ ∞.

We consider applications to semilinear elliptic boundary value problems. Let
Ω be a smooth, bounded domain in Rn, and let A ≥ λ0 > 0 be a selfadjoint
operator on L2(Ω) such that C∞0 (Ω) ⊂ D := D(A1/2) ⊂ Hm(Ω), m > 0, with
eigenvalues λ0 < λ1 < . . . and eigenfunctions that are in L∞(Ω). Let f(x, t) be
a Carathéodory function on Ω× R such that

(1.14) |f(x, t)| ≤ C(|t|+ 1).

Let

(1.15) F (x, t) =
∫ t

0

f(x, s) ds.
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We assume

(I) For some eigenvalue λ`, ` ≥ 1, we have

2F (x, t) ≤ λ`t
2, |t| < δ,(1.16)

2F (x, t) ≥ λ`−1t
2, t ∈ R,(1.17)

2F (x, t) ≥ λ`t
2 − V (x)2h(t)−W (x), t ∈ R,(1.18)

where δ > 0,W ∈ L1(Ω), h(t) is a locally bounded function satisfying

(1.19) h(t)/t2 → 0 as t2 →∞

and V (x) ∈ L2(Ω) maps D into L2(Ω).
(II) f(x, t)/t→ α±(x) a.e. as t→ ±∞.

(III) If

(1.20) Au = α+u
+ − α−u

−,

where u± = max{±u, 0}, then u ≡ 0.

We have

Theorem 1.5. Under the above hypotheses the equation

(1.21) Au = f(x, u)

has at least one nontrivial solution.

We can change the directions of the inequalities (1.16)–(1.18). In fact, we
can replace hypothesis (I) with

(I′) For some eigenvalue λ`, ` ≥ 0, we have

2F (x, t) ≥ λ`t
2, |t| < δ,(1.22)

2F (x, t) ≤ λ`+1t
2, t ∈ R,(1.23)

2F (x, t) ≤ λ`t
2 + V (x)2h(t) +W (x), t ∈ R,(1.24)

with V , W , h as before.

Theorem 1.6. Under hypotheses (I′), (II) and (III), (1.21) has at least one
nontrivial solution.

There are other geometries covered by our theorems. For instance, we have

Theorem 1.7. Assume that (1.4) holds and that

G(v) ≤ mR, v ∈ N ∩ ∂BR, R > 0,(1.25)

G(w) ≥ α, w ∈M.(1.26)

If β ≥ 0 and (1.12) holds, then there is a sequence satisfying (1.13).
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Theorem 1.8. Assume that

(1.27) G(0) ≤ α ≤ G(u), u ∈ ∂Bδ, δ > 0,

and there is a ϕ0 ∈ ∂B1 such that

G(Rϕ0) ≤ mR, R > δ.

If β ≥ 0 and (1.12) holds, then there is a sequence satisfying (1.13).

Applications of these theorems will be given in forthcoming publications.
Our abstract theorems are given in the next section. Proofs of the theorems of
this section are given in Section 3.

2. The abstract theorems

We recall the definition of linking given in [ST]. Let E be a Banach space
and let Φ be the set of all continuous maps Γ(t) from E × [0, 1] to E such that

(a) Γ(0) = I,
(b) there is an x0 ∈ E such that Γ(1)x = x0 for each x ∈ E,
(c) Γ(t)x→ x0 as t→ 1 uniformly on bounded subsets of E,
(d) for each t ∈ [0, 1),Γ(t) is a homeomorphism of E onto itself,
(e) Γ(t)−1 is continuous from E × [0, 1) to E.

Definition. A subset A of E links a subset B of E if A ∩ B = ∅ and for
each Γ ∈ Φ there is a t ∈ [0, 1] such that Γ(t)A ∩B 6= ∅.

Let A,B be subsets of E such that A links B, and let G be a C1 functional
on E. Define

(2.1) a = inf
Γ∈Φ

sup
0≤s≤1,u∈A

G(Γ(s)u), a0 = sup
A
G, b0 = inf

B
G.

Since A links B we have

(2.2) b0 ≤ a.

Assume that

(2.3) d(A,B) > 0.

Let

(2.4) B′ := {v ∈ B : G(v) < a0}.

Note that

(2.5) B′ = ∅ iff a0 ≤ b0.
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Let ψ(t) be a positive nondecreasing function on [0,∞) such that

(2.6) a0 − b0 <

∫ R

0

ψ(t) dt

for some finite R ≤ d′ := d(B′, A) (we take d′ = ∞ if B′ = ∅). Our first result is

Theorem 2.1. Assume in addition that

(2.7) −∞ < b0, a <∞.

Then for every δ > 0 there is a u ∈ E such that

(2.8) b0 − δ ≤ G(u) ≤ a+ δ, ‖G′(u)‖ < ψ(d(u,A)).

Proof. Assume first that a = a0. If (2.8) were not true, then there would
be a δ > 0 such that

(2.9) ψ(d(u,A)) ≤ ‖G′(u)‖

holds for all u in the set

(2.10) Q = {u ∈ E : b0 − 3δ ≤ G(u) ≤ a+ 3δ}.

By reducing δ if necessary we can find θ < 1 and T < R such that

(2.11) a− b0 + δ < θ

∫ T

0

ψ(t) dt, δ < θψ(0)T.

Let

Q0 = {u ∈ Q : b0 − 2δ ≤ G(u) ≤ a+ 2δ},
Q1 = {u ∈ Q : b0 − δ ≤ G(u) ≤ a+ δ},
Q2 = E \Q0, η(u) = d(u,Q2)/[d(u,Q1) + d(u,Q2)].

There is a locally Lipschitz continuous map Y (u) of Ê = {u ∈ E : G′(u) 6= 0} to
itself such that

(2.12) ‖Y (u)‖ ≤ 1, θ‖G′(u)‖ ≤ (G′(u), Y (u)), u ∈ Ê.

Let σ(t) be the flow generated by η(u)Y (u). Then

σ(t)v − v =
∫ t

0

η(σ(τ)v)Y (σ(τ)v) dτ.

Consequently,

(2.13) d(v,A)− t ≤ d(σ(t)v,A) ≤ d(v,A) + t, t > 0.

We also have

dG(σ(t)v)/dt = (G′(σ), σ′) = η(σ)(G′(σ), Y (σ)) ≥ θη(σ)‖G′(σ)‖(2.14)

≥ θη(σ)ψ(d(σ,A)) ≥ θη(σ)ψ(d(v,A)− t)
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in view of (2.9), (2.12) and (2.13). Now suppose v ∈ B is such that there is a
t1 ∈ [0, T ] for which σ(t1)v /∈ Q1. Then G(σ(t1)v) > a+ δ. Consequently,

(2.15) G(σ(T )v) > a+ δ.

On the other hand, if σ(t)v ∈ Q1 for all t ∈ [0, T ], then

(2.16) G(σ(T )v) ≥ G(v) + θ

∫ T

0

ψ(d(σ(t)v,A)) dt.

If v ∈ B′, this gives

G(σ(T )v) ≥ b0 + θ

∫ T

0

ψ(d(v,A)− t) dt ≥ b0 + θ

∫ d

d−T

ψ(τ) dτ

≥ b0 + θ

∫ T

0

ψ(τ) dτ > a+ δ

by (2.11), where d = d(v,A) ≥ d′ ≥ R > T . Thus (2.15) holds in this case as
well. If v ∈ B \B′, then

G(σ(T )v) ≥ a+ θ

∫ T

0

ψ(d(σ(t)v,A)) dt ≥ a+ θψ(0)T > a+ δ

by (2.11) and (2.16). Hence (2.15) holds for all v ∈ B.
We shall show that A links B1 := σ(T )B. If so, this will contradict the

definition of a. For there is a Γ ∈ Φ such that

(2.17) G(Γ(s)u) < a+ (δ/2), 0 ≤ s ≤ 1, u ∈ A.

But if A links B1, then there is a t1 ∈ [0, 1] such that Γ(t1)A ∩ B1 6= ∅. This
means that there is a u1 ∈ A such that Γ(t1)u1 ∈ B1. In view of (2.15) this
would imply G(Γ(t1)u1) > a+ δ, contradicting (2.17).

Thus it remains to show that A links B1. To this end, note that σ(t)v /∈ A
for v ∈ B and t ∈ [0, T ]. For v ∈ B′ this follows from (2.13) and the fact that
T < R ≤ d′. If v ∈ B \B′ we have, by (2.14),

G(σ(t)v) ≥ a+ θ

∫ t

0

η(σ(τ)v)ψ(d(σ(τ)v,A)) dτ.

Thus

(2.18) G(σ(t)v) > a, t > 0,

unless η(v) = 0. But this would mean that v ∈ Q2, and consequently that
G(v) ≥ a + 2δ. Hence (2.18) holds for all v ∈ B \ B′. Therefore σ(t)v cannot
intersect A for all v ∈ B and t ∈ [0, T ]. Let Γ be any map in Φ. Define

Γ1(t) =

{
σ(2tT )−1, 0 ≤ t ≤ 1/2,

σ(T )−1Γ(2t− 1), 1/2 < t ≤ 1.
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Then Γ1 ∈ Φ. Since A links B, there is a t1 ∈ [0, 1] such that Γ1(t1)A ∩ B 6= ∅.
If 0 ≤ t1 ≤ 1/2, this would mean σ(2t1T )−1A ∩ B 6= ∅, or, equivalently, that
A ∩ σ(2t1T )B 6= ∅, contradicting the fact that σ(t)B does not intersect A for
t ∈ [0, T ]. Thus we must have 1/2 < t1 ≤ 1. This says that σ(T )−1Γ(2t1−1)A∩
B 6= ∅, or, equivalently, Γ(2t1 − 1)A ∩ σ(T )B 6= ∅. Thus A links B1 = σ(T )B,
and the proof is complete for the case a = a0. If a 6= a0, then it follows from
Corollary 2.8 of [Sc5] that there is a sequence {uk} ⊂ E such that

G(uk) → a, G′(uk) → 0.

Thus for each δ > 0 we can find a uk such that a−δ ≤ G(uk) ≤ a+δ, ‖G′(uk)‖ <
ψ(0) ≤ ψ(d(uk, A)) which gives (2.8) for this case as well. �

Theorem 2.2. Assume (2.7), and let

(2.19) A′′ := {u ∈ A : G(u) > b0}.

Assume that (2.6) holds for some R ≤ d′′ := d(A′′, B). Then for each δ > 0
there is a u ∈ E such that

(2.20) b0 − δ ≤ G(u) ≤ a+ δ, ‖G′(u)‖ < ψ(d(u,B)).

Proof. As before, we may assume a = a0. If the conclusion of the theorem
were false, there would be a δ > 0 such that

(2.21) ψ(d(u,B)) ≤ ‖G′(u)‖, u ∈ Q,

where Q is given by (2.10). Let θ, T , Q0, Q1, Q2, η and Y be determined as in
the proof of Theorem 2.1. Let σ(t) be the flow generated by −η(u)Y (u). Then
we have

(2.22) d(u,B)− t ≤ d(σ(t)u,B) ≤ d(u,B) + t

and

dG(σ(t)u)/dt = −η(σ)(G′(σ), Y (σ)) ≤ −θη(σ)‖G′(σ)‖(2.23)

≤ −θη(σ)ψ(d(σ,B)).

Hence

(2.24) G(σ(t)u) ≤ G(u)− θ

∫ t

0

η(σ(τ)u)ψ(d(σ(τ)u,B)) dτ.

Now suppose u ∈ A is such that there is a t1 ∈ [0, T ] for which σ(t1)u /∈ Q1.
Then

(2.25) G(σ(T )u) ≤ G(σ(t1)u) < b0 − δ.
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On the other hand, if σ(t)u ∈ Q1 for 0 ≤ t ≤ T , then

(2.26) G(σ(T )u) ≤ G(u)− θ

∫ T

0

ψ(d(σ(t)u,B)) dt.

If u ∈ A′′, this implies

G(σ(T )u) ≤ a− θ

∫ T

0

ψ(d(u,B)− t) dt

≤ a− θ

∫ d

d−T

ψ(τ) dτ ≤ a− θ

∫ T

0

ψ(τ) dτ < b0 − δ,

where d = d(u,B) ≥ d′′ ≥ R > T . Thus (2.25) holds. If u ∈ A \A′′, then

G(σ(T )u) ≤ b0 − θψ(0)T < b0 − δ.

Hence (2.25) holds for all u ∈ A.
Let A1 = σ(T )A, a10 = supA1

G and

(2.27) a1 = inf
Γ∈Φ

sup
0≤s≤1,u∈A1

G(Γ(s)u).

I claim that

(a) a10 < b0 ≤ a1 ≤ a,
(b) A1 links B.

If (a) and (b) are true, then it follows from Theorem 2.1 of [ST] that there is a
sequence {uk} ⊂ D such that

G(uk) → a1, G′(uk) → 0.

This will contradict (2.21), establishing the theorem. First let us prove (b). We
show that σ(t)A does not intersect B for 0 ≤ t ≤ T . For u ∈ A′′ this follows
from (2.22) and the fact that T < R ≤ d′′. If u ∈ A\A′′, we see from (2.24) that

(2.28) G(σ(t)u) < b0, t ≥ 0,

unless η(u) = 0, i.e., unless u ∈ Q2. But then G(u) ≤ b0 − 2δ. Hence (2.27)
holds for all u ∈ A\A′′. This will prevent σ(t)u from intersecting B at any time.
This now implies (b). Let Γ be any map in Φ. Let

Γ1(s) =

{
σ(2sT ), 0 ≤ s ≤ 1/2,

Γ(2s− 1)σ(T ), 1/2 < s ≤ 1.

Then Γ1 ∈ Φ. Since A links B, there is an s1 ∈ [0, 1] such that Γ1(s1)A∩B 6= ∅.
Since σ(2sT )A ∩ B = ∅ for 0 ≤ s ≤ 1/2, we must have s1 > 1/2. Hence
Γ(2s1 − 1)σ(T )A ∩B 6= ∅, showing that A1 = σ(T )A links B.
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The first inequality in (a) follows from (2.25) while the second follows from
(b) and (2.27). To prove the last, let Γ be any map in Φ. Let

Γ̃(s) =

{
σ(2sT )−1, 0 ≤ s ≤ 1/2,

Γ(2s− 1)σ(T )−1, 1/2 < s ≤ 1.

Then Γ̃ ∈ Φ and

G(Γ̃(s)σ(T )u) =

{
G(σ(T − 2sT )u) ≤ G(u), 0 ≤ s ≤ 1/2,

G(Γ(2s− 1)u), 1/2 < s ≤ 1.

Therefore
sup

0≤s≤1,u∈A1

G(Γ̃(s)u) ≤ sup
0≤s≤1,u∈A

G(Γ(s)u).

Thus a1 ≤ a, and the proofs of (a) and the theorem are complete. �

Corollary 2.3. Let {Ak, Bk} be a sequence of pairs of sets satisfying the
hypotheses of Theorem 2.1 such that d′k = d(Ak, B

′
k) → ∞ as k → ∞ and for

some β ≥ 0,

(2.29) (ak0 − bk0)/(d′k)β+1 → 0 as k →∞.

Then there is a sequence {uk} ⊂ E such that

(2.30) bk0 − (1/k) ≤ G(uk) ≤ ak + (1/k), ‖G′(uk)‖/(d(uk, Ak) + 1)β .

Similarly, if d′′k = d(A′′k , Bk) →∞ and

(2.31) (ak0 − bk0)/(d′′k)β+1 → 0

then there is a sequence {uk} ⊂ E such that

(2.32) bk0 − (1/k) ≤ G(uk) ≤ ak + (1/k), ‖G′(uk)‖/(d(uk, Bk) + 1)β → 0.

Proof. For each k take

ψk(t) = (β + 1)(ak0 − bk0)(t+ 1)β/Rβ+1
k

with Rk equal to d′k or d′′k , as the case may be. Then∫ Rk

0

ψk(t) dt = (ak0 − bk0)[(Rk + 1)β+1 − 1]/Rβ+1
k > ak0 − bk0.

By Theorems 2.1 and 2.2 there is a uk such that

bk0 − (1/k) ≤ G(uk) ≤ ak + (1/k)

and either ‖G′(uk)‖ < ψk(d(uk, Ak)) or ‖G′(uk)‖ < ψ(d(uk, Bk)), as the case
may be. We now merely note that ψk(tk)/(tk + 1)β → 0 as k → ∞ for any
sequence tk ≥ 0. �
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3. The applications

In this section we shall prove Theorems 1.5 and 1.6. We let N` denote the
subspace of L2(Ω) spanned by the eigenfunctions of A corresponding to the
eigenvalues λ0, . . . , λ`. Let M` = N⊥

` ∩D. Thus D = M` ⊕N`. Let

(3.1) a(u, v) = (Au, v), ‖u‖2D = a(u, u), u,v ∈ D,

and

(3.2) G(u) = ‖u‖2D − 2
∫

Ω

F (x, u) dx, u ∈ D.

It is readily verified under hypothesis (1.14) that G is a C1 functional on D and

(3.3) (G′(u), v) = 2a(u, v)− 2(f(u), v), u,v ∈ D,

where we write f(u) for f(x, u). It therefore follows that u is a solution of (1.21)
iff

(3.4) G′(u) = 0.

Now (1.17) implies

(3.5) G(v) ≤ ‖v‖2D − λ`−1‖v‖2 ≤ 0, v ∈ N`−1.

We also have, by (1.18),

(3.6) G(v) ≤ ‖v‖2D − λ`‖v‖2 +
∫
V (x)2h(v) dx+B,

where B =
∫
Ω
W (x) dx.

Let ε > 0 be given. By (1.19) there is a K such that |h(t)|/t2 < ε for |t| > K.
Thus∫

V (x)2h(v) dx ≤
∫
|v|<K

+
∫
|v|>K

≤ C1

∫
V (x)2 dx+ ε

∫
V (x)2v(x)2 dx

≤ C1‖V ‖2 + εC2‖v‖2D,

where

(3.7) ‖V v‖2 ≤ C2‖v‖2D, v ∈ D.

Thus by (3.6),

G(v) ≤ C1‖V ‖2 + εC2R
2 +B, v ∈ N`, ‖v‖D = R.

Thus mR = sup{G(v) : v ∈ N`, ‖v‖D = R} satisfies lim supR→∞mR/R
2 ≤ εC2.

Therefore

(3.8) mR/R
2 → 0 as R→∞.
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For w ∈M`−1, write w = w′ + y, where w′ ∈M` and y ∈ E(λ`), the eigenspace
of λ`. Since E(λ`) is finite-dimensional and contained in L∞(Ω), there is a % > 0
such that

(3.9) ‖y‖D ≤ % implies |y(x)| ≤ δ/2,

where δ > 0 is given in (1.16). Thus if ‖w‖D ≤ % and |w(x)| ≥ δ then

(3.10) δ ≤ |w(x)| ≤ |w′(x)|+ |y(x)| ≤ |w′(x)|+ δ/2.

Hence

(3.11) |w(x)| ≤ 2|w′(x)|.

Thus by (1.16) and (1.14),

(3.12) G(w) ≥ ‖w′‖2D − λ`‖w′‖2 − C

∫
|w|>δ

(w2 + |w|) dx.

By the Sobolev imbedding theorem, there is a p > 2 such that

(3.13) ‖w‖p ≤ Cp‖w‖D, w ∈ D.

Hence ∫
|w|>δ

(w2 + |w|) dx ≤ (δ2−p + δ1−p)
∫
|w|>δ

|w|p dx

≤ C

∫
2|w′|>δ

|w′|p dx ≤ C‖w′‖p
p ≤ C ′‖w′‖p

D

by (3.11) and (3.13). Hence by (3.12),

G(w) ≥ (1− (λ`/λ`+1)− C ′‖w′‖p−2
D )‖w′‖2D(3.14)

≥ ε‖w′‖2D, w ∈M`−1, ‖w‖D ≤ %,

for % sufficiently small. Now suppose

(3.15) inf{G(w) : w ∈M`−1, ‖w‖D = %} = 0.

Then there is a sequence {wk} ⊂ M`−1 such that ‖wk‖D = % and G(wk) → 0.
Write wk = w′k + yk, where w′k ∈ M` and yk ∈ E(λ`). By (3.14) we see that
‖w′k‖D → 0. Hence ‖yk‖D → %. Thus for a renamed subsequence, yk → y in D

and ‖y‖D = %. By (3.9), |y(x)| ≤ δ/2. Hence by (1.16),

(3.16) 2F (x, y(x)) ≤ λ`y(x)2, x ∈ Ω.

Also
‖y‖2D − 2

∫
Ω

F (x, y) dx = G(y) = 0.

In other words, ∫
Ω

{2F (x, y)− λ`y
2} dx = 0.
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Since the integrand is never positive, we have

(3.17) 2F (x, y(x)) ≡ λ`y(x)2, x ∈ Ω.

For ζ(x) ∈ C∞0 (Ω) and t small we have

2F (x, y + tζ) ≤ λ`(y + tζ)2.

Hence for t > 0,

2t−1[F (x, y + tζ)− F (x, y)] ≤ λ`[(y + tζ)2 − y2]/t.

Taking the limit as t→ 0, we obtain

f(x, y)ζ ≤ λ`yζ, ζ ∈ C∞0 (Ω).

This implies f(x, y) ≡ λ`y. Since Ay = λ0y, we see that y is a solution of (1.21).
Since ‖y‖D = %, y 6= 0. Thus if (3.15) holds, we have a nontrivial solution of
(1.21). Thus we may assume that the left hand side of (3.15) is positive. But in
this case the hypotheses of Corollary 1.4 are satisfied with β = 1. Hence there
is a sequence {uk} ⊂ D such that

(3.18) G′(uk)/(‖uk‖D + 1) → 0, G(uk) ≥ ε.

I claim that

(3.19) Rk = ‖uk‖D ≤ C.

For if Rk → ∞, then we take ũk = uk/Rk. Then ‖ũk‖D = 1, ũk → ũ weakly in
D, strongly in L2(Ω) and a.e. in Ω for a renamed subsequence. Hence by (3.18),

(G′(uk), uk)/(2R2
k) = 1− (f(uk), uk)/R2

k → 1− α(ũ) = 0,

where

α(u) =
∫

Ω

{α+(x)(u+)2 + α−(x)(u−)2} dx.

This shows that ũ 6= 0. Moreover, we have

(G′(uk), v)/(2Rk) = a(ũk, v)− (f(uk)/Rk, v) → a(ũ, v)− α(ũ, v) = 0, v ∈ D,

where

α(u, v) =
∫

Ω

{α+u
+ − α−u

−}v dx.

Hence ũ is a solution of (1.20). By hypothesis (III) this implies that ũ = 0,
contradicting our previous conclusion. Hence (3.19) holds.

This implies the existence of a renamed subsequence such that uk → u weakly
in D, strongly in L2(Ω) and a.e. in Ω. By (3.18),

(G′(uk), v) = 2a(uk, v)− 2(f(uk), v) → 2a(u, v)− 2(f(u), v) = 0, v ∈ D.
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Hence u is a solution of (1.21). We have also

‖uk‖2 = (G′(uk), uk)/2 + (f(uk), uk) → (f(u), u) = ‖u‖2D.

Thus uk → u strongly in D, and 0 < ε ≤ G(uk) → G(u). This shows that u 6= 0,
and the proof of Theorem 1.5 is complete. �

Proof of Theorem 1.6. By following the methods of the previous proof,
we show that

G(v) ≤ −ε‖v′‖2D, v ∈ N`, ‖v‖2D ≤ %,

for % > 0 sufficiently small, where v = v′ + y, v′ ∈ N`−1, y ∈ E(λ`). Also

G(w) ≥ 0, w ∈M`,

and

G(w) ≥ −mR, w ∈M`−1, ‖w‖D = R,

where mR satisfies (3.8). Reasoning as before we show that either (1.21) has a
nontrivial solution in E(λ`) or

G(v) ≤ −ε1 < 0, v ∈ N`, ‖v‖D = %.

Now we can apply Corollary 1.4 to −G to obtain the desired conclusion. �

Proof of Theorem 1.3. We take A = {v ∈ N : ‖v‖ ≤ R} ∪ {sw0 + v :
s ≥ 0, v ∈ N , ‖sw0 + v‖ = R}, B = ∂Bδ ∩M . Then A and B link each other
(Proposition 1.2 of [ST]), and a0 ≤ mR, α ≤ b0. The hypotheses of Theorem 2.2
are satisfied, and we note that d(u,B) ≤ ‖u‖+ δ. �

Proof of Corollary 1.4. We take ψR(t) = (β + 1)mR(1 + t)β/Rβ+1.

Then ∫ R

0

ψR(t) dt = mR[(1 +R)β+1 − 1]/Rβ+1 > mR.

Hence there is a uR such that α− (1/R) ≤ G(uR) ≤ mR + (1/R) and

‖G′(uR)‖/(‖uR‖+ 1) < (β + 1)mR/R
β+1 → 0.

This gives the desired conclusion. �

Proof of Theorem 1.7. Let Ak = N ∩ ∂Bk, B = M and apply Corol-
lary 2.3. �

Proof of Theorem 1.8. Let Ak = {0, kϕ0}, B = ∂Bδ and apply Corol-
lary 2.3. �
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