# ESTIMATION OF THE SECOND DERIVATIVES FOR SURFACES EVOLVING UNDER THE ACTION OF THEIR PRINCIPAL CURVATURES 

N. Ivochkina - O. Ladyzhenskaya

Dedicated to Louis Nirenberg

## 1. Introduction

In our paper [8], we have formulated some results on global unique solvability of the first initial-boundary value problem for equations of the form

$$
\begin{equation*}
M[u]=-\frac{u_{t}}{\sqrt{1+u_{x}^{2}}}+f(k(u))=g \quad \text { in } Q=\Omega \times(0, T) \subset \mathbb{R}^{n+1} \tag{1}
\end{equation*}
$$

$$
u-\varphi=0 \quad \text { on } \partial^{\prime} Q=\partial^{\prime \prime} Q \cup \Omega(0)
$$

where $\partial^{\prime \prime} Q=\partial \Omega \times[0, T], \Omega(0)=\{z=(x, t): x \in \Omega, t=0\}$, and $\Omega$ is a domain in $\mathbb{R}^{n}$ with a smooth boundary, which only for the sake of simplicity we assumed to be bounded. In (1), (2), $g$ and $\varphi$ are smooth known functions of $z$, defined on $\bar{Q}$, and $k(u)=\left(k_{1}(u), \ldots, k_{n}(u)\right)$, where $k_{i}(u)(z)$ are the principal curvatures of the graph $\mathcal{T}_{t}$ :

$$
x_{0}=u(x, t), \quad x \in \bar{\Omega},
$$

of the sought function $u(\cdot, t): \bar{\Omega} \rightarrow \mathbb{R}^{1}$ for fixed $t \in[0, T]$.

1991 Mathematics Subject Classification. 35B40, 35J65.
The research described in this publication was made possible in part by Grant No. ME-400 from ISF (International Science Foundation) and Grant No. ME-430 from ISF and Russian Government.

In [8] we studied the cases

$$
f(k)=f_{m}(k)=S_{m}(k)^{1 / m}, \quad S_{m}(k)=\sum_{i_{1}<\ldots<i_{m}} k_{i_{1}} \ldots k_{i_{m}},
$$

with $m=2, \ldots, n$. Contrary to the case $m=1$, considered by many authors, equation (1) with $f=f_{m}, m>1$, is non-totally parabolic. Its main domain of parabolicity is the cone

$$
\Gamma_{m}=\left\{k: k \in \mathbb{R}^{n}, S_{l}(k)>0, l=1, \ldots, m\right\} \subset \Pi_{+}^{n}=\left\{k: S_{1}(k)=\sum_{i=1}^{n} k_{i}>0\right\}
$$

(for the properties of $f_{m}$ on $\Gamma_{m}$, see [1], [4]).
Here we recall the principal result of [8]. To formulate it let us include problem (1), (2) in the family of problems

$$
\begin{gather*}
M\left[u^{\tau}\right]=g^{\tau} \quad \text { in } Q \\
\left.\left(u^{\tau}-\varphi^{\tau}\right)\right|_{\partial^{\prime \prime} Q}=0,\left.\quad\left(u^{\tau}-\varphi^{0}\right)\right|_{\Omega(0)}=0, \quad \tau \in[0,1],
\end{gather*}
$$

where $\varphi^{0}(x, t)=\varphi(x, 0), \varphi^{\tau}=\tau \varphi+(1-\tau) \varphi^{0}, g^{\tau}=\tau g+(1-\tau) g^{0}$ and $g^{0}(x, t)=$ $f_{m}(k(\varphi(x, 0)))$.

For $\tau=1$, problem ( $3_{\tau}$ ) coincides with problem (1), (2) and for $\tau=0$ it has the solution $u^{0}(x, t)=\varphi(x, 0)$.

We call a function $u^{\tau}$ an admissible solution of $\left(3_{\tau}\right)$ if $u^{\tau} \in C^{2,1}(\bar{Q}), u^{\tau}$ satisfies $\left(3_{\tau}\right)$ and for any $z \in \bar{Q}, k\left(u^{\tau}\right)(z)$ belongs to $\Gamma_{m}$.

The following theorem holds:
Theorem 1. Any of the problems $\left(3_{\tau}\right)$ with $f=f_{m}, m>1, \tau \in[0,1]$, including the problem (1), (2) with $f=f_{m}$, has a unique admissible solution $u^{\tau}$ belonging to $H^{4+\alpha, 2+\alpha / 2}(\bar{Q})$ if the following conditions are satisfied:
(a) $\partial \Omega \in \Gamma_{m} \cap H^{4+\alpha}, g \in H^{2+\alpha, 1+\alpha / 2}(\bar{Q}), \varphi \in H^{4+\alpha, 2+\alpha / 2}(\bar{Q}), k\left(\varphi^{0}\right)(x) \in$ $\Gamma_{m}$ for $x \in \bar{\Omega}, \varphi$ and $g$ satisfy on $\partial \Omega(0)$ the compatibility conditions up to the second order;
(b)

$$
\inf _{Q} g \geq 0, \quad \inf _{\partial^{\prime} Q} u_{t}+\inf _{Q} g \equiv \nu_{1}>0, \quad g_{t} \leq 0 \quad \text { in } Q,
$$

(c) there is a common minorant c for $\partial u^{\tau} / \partial n$, i.e.,

$$
\inf _{\tau \in[0,1]} \inf _{\partial^{\prime \prime} Q} \frac{\partial u^{\tau}}{\partial n} \geq c
$$

Here $H^{k+\alpha, l+\beta}(\bar{Q})$ are Hölder spaces with $\alpha, \beta \in(0,1)$. The symbol $\partial / \partial n$ in (c) is the derivative in the direction of the inner normal to $\partial \Omega$. The inclusion $\partial \Omega \in \Gamma_{m}$ for $m<n$ means that for $\omega\left(x_{1}, \ldots, x_{n-1}\right)$ defining $\partial \Omega$ in local cartesian coordinates, $\left(k_{1}(\omega), \ldots, k_{n-1}(\omega)\right) \in \Gamma_{m} \subset \mathbb{R}^{n-1}$, and $\partial \Omega \in \Gamma_{m}$ for $m=n$ means that $\Omega$ is strictly convex ${ }^{1}$.

[^0]The core of the proof of Theorem 1 consists in getting a priori estimates for the norms of $u^{\tau}$ in the spaces $H^{2+\beta, 1+\beta / 2}(\bar{Q})$ with a $\beta>0$. The conditions under which this was done for problem (1), (2) are satisfied for any of the problems $\left(3_{\tau}\right), \tau \in[0,1]$, and majorants could be chosen to be independent of $\tau$. This is why in what follows we speak only about problem (1), (2) and its admissible solutions.

In this paper we estimate $\sup _{Q}\left|u_{x x}\right|$, supposing that the estimates

$$
\begin{equation*}
\sup _{Q}\left|u_{x}\right| \leq M_{1} \quad \text { and } \quad \sup _{\partial^{\prime} Q}\left|u_{x x}\right| \leq M_{2} \tag{4}
\end{equation*}
$$

are known. We will do that for a class of symmetric functions $f$ (this means that $f$ is invariant with respect to transpositions of the arguments $k_{1}, \ldots, k_{n}$ ) which are defined on a domain $\mathcal{D} \subset \mathbb{R}^{n}$ containing the values of $k(u)(z)$, $z \in \bar{Q}$, for the solution $u(z)$ under consideration. One of the conditions imposed on $f$ is its ellipticity on $\mathcal{D}$, i.e.,

$$
\begin{equation*}
f^{i}(k) \equiv \frac{\partial f(k)}{\partial k_{i}}>0, \quad i=1, \ldots, n, k \in \mathcal{D} \tag{5}
\end{equation*}
$$

Other conditions on $f$ will be formulated in Sec. 3. All of them are satisfied for $f=f_{m}, m=2, \ldots, n$.

It is known (see [3]) that any real-valued smooth symmetric function $f$ can be represented as a smooth function $F$ of symmetric matrices which is invariant under the transformations $A \rightarrow B A B^{*}$ with any orthogonal matrix $B$. Let us write this in the form

$$
\begin{equation*}
f(\lambda(A))=F(A) \tag{6}
\end{equation*}
$$

where $\lambda_{i}(A), i=1, \ldots, n$, are the eigenvalues of $A$. The properties (5) guarantee the inequalities

$$
\begin{equation*}
\frac{\partial F(A)}{\partial A_{i j}} \xi_{i} \xi_{j}>0 \tag{7}
\end{equation*}
$$

where $A_{i j}$ are the elements of $A$, and $\xi$ is any vector from $\mathbb{R}^{n}$ with $|\xi|=1$. Here and later, a double repeated index implies summation from 1 up to $n$.

The principal curvatures $k_{i}(u)$ of the surface $\mathcal{T}_{t}$ for $x \in \bar{\Omega}$ are the eigenvalues of the matrix

$$
\begin{equation*}
\frac{1}{\gamma(u)} g\left(u_{x}\right)^{-1 / 2} u_{x x} g\left(u_{x}\right)^{-1 / 2} \equiv \frac{1}{\gamma(u)} u_{(x x)} \tag{8}
\end{equation*}
$$

calculated at the point $z=(x, t) \in \bar{Q}$. Here and in the sequel we use the notations: $\gamma(u)=\sqrt{1+u_{x}^{2}}, u_{x x}$ is the Hessian of $u$ with the elements $u_{i j}=u_{x_{i} x_{j}}$;
$g\left(u_{x}\right)$ is the metric tensor of the surface $\mathcal{T}_{t}$, its elements are $g_{i j}\left(u_{x}\right)=\delta_{i}^{j}+u_{i} u_{j}$, where $u_{i}=u_{x_{i}}$. From this and (6) we have

$$
\begin{equation*}
f(k(u))=F\left(\frac{1}{\gamma(u)} u_{(x x)}\right) \equiv \mathcal{F}\left(u_{x}, u_{x x}\right) . \tag{9}
\end{equation*}
$$

The property (7) implies the inequalities

$$
\begin{equation*}
\frac{\partial \mathcal{F}\left(u_{x}, u_{x x}\right)}{\partial u_{i j}} \xi_{i} \xi_{j}>0 \quad \text { for all } \xi \text { with }|\xi|=1 \tag{10}
\end{equation*}
$$

## 2. Estimation of $u_{t}$

First, we estimate $\sup _{Q}\left|u_{t}\right|$ for the equations

$$
\begin{equation*}
-\frac{u_{t}}{1+u_{x}^{2}}+\mathcal{F}\left(u_{x}, u_{x x}\right)=g(x, t) \tag{2.1}
\end{equation*}
$$

with an arbitrary smooth function $\mathcal{F}$ satisfying only the inequalities (10) on the solution $u$. Let us differentiate (2.1) with respect to $t$. The result can be represented as a linear equation for $w=u_{t}$ :

$$
\begin{equation*}
-a w_{t}+a_{i j} w_{i j}+b_{i} w_{i}=g_{t} \tag{2.2}
\end{equation*}
$$

Its coefficients are bounded functions, and $a>0$ and $a_{i j}$ satisfy

$$
\begin{equation*}
a_{i j} \xi_{i} \xi_{j} \equiv \frac{\partial \mathcal{F}\left(u_{x}, u_{x x}\right)}{\partial u_{i j}} \xi_{i} \xi_{j}>0, \quad|\xi|=1 \tag{2.3}
\end{equation*}
$$

A standard reasoning, based on the maximum principle for parabolic equations, yields

$$
\begin{array}{ll}
u_{t}(z) \geq \min _{\partial^{\prime} Q} u_{t} \equiv \nu_{2} & \text { if } g_{t} \leq 0 \text { in } Q \\
u_{t}(z) \leq \max _{\partial^{\prime} Q} u_{t} \equiv \mu_{1} & \text { if } g_{t} \geq 0 \text { in } Q \tag{2.5}
\end{array}
$$

Let us also find a majorant for $u_{t}$ without the hypothesis that $g_{t} \geq 0$. For this purpose we introduce the function $v=w e^{-\lambda t}, \lambda>0$. By (2.2),

$$
\begin{equation*}
-\frac{1}{\sqrt{1+u_{x}^{2}}}\left(v_{t}+\lambda v\right)+a_{i j} v_{i j}+b_{i} v_{i}=g_{t} e^{-\lambda t} \tag{2.6}
\end{equation*}
$$

If $v$ attains its maximum on $\bar{Q}$ at $\left(x^{0}, t^{0}\right) \in Q$ then at this point we have $v_{t} \geq 0$ and $a_{i j} v_{i j}+b_{i} v_{i} \leq 0$, which, together with (2.6), leads to

$$
\lambda v\left(x^{0}, t^{0}\right) \leq-\left.e^{-\lambda t^{0}} g_{t} \sqrt{1+u_{x}^{2}}\right|_{\left(x^{0}, t^{0}\right)}
$$

and then

$$
u_{t}(x, t) \leq e^{\lambda t} \sup _{(y, \tau) \in Q_{t}}\left\{-\frac{1}{\lambda} e^{-\lambda \tau} g_{\tau}(y, \tau) \sqrt{1+u_{y}^{2}(y, \tau)}\right\}, \quad Q_{t}=\Omega \times(0, t)
$$

If the point $\left(x^{0}, t^{0}\right)$ of the maximum of $v$ on $\bar{Q}$ happens to lie on $\partial^{\prime} Q$, then $v(x, t) \leq v\left(x^{0}, t^{0}\right)$ for any $(x, t)$ and

$$
u_{t}(x, t) \leq e^{\lambda t} \sup _{(y, \tau) \in \partial^{\prime} Q_{t}}\left\{u_{\tau}(y, \tau) e^{-\lambda \tau}\right\} .
$$

So for both cases, using the arbitrariness of $\lambda>0$, we get

$$
\begin{align*}
& u_{t}(x, t) \leq \inf _{\lambda>0}\left\{e ^ { \lambda t } \operatorname { m a x } \left[\sup _{(y, \tau) \in Q_{t}}\left(-\frac{1}{\lambda} e^{-\lambda \tau} g_{\tau}(y, \tau) \sqrt{1+u_{y}^{2}(y, \tau)}\right)\right.\right.  \tag{2.7}\\
&\left.\left.\sup _{(y, \tau) \in \partial^{\prime} Q_{t}}\left(u_{\tau}(y, \tau) e^{-\lambda \tau}\right)\right]\right\} \equiv \mu_{2}(t)
\end{align*}
$$

for all $x \in \bar{\Omega}$ and $t \in[0, T]$.
We sum up these conclusions in the following theorem.
Theorem 2. Let $u$ be a smooth solution of (2.1) with smooth $\mathcal{F}$ and $g$, and $\mathcal{F}$ satisfying (2.3). Then:
(a) $\quad \nu_{2} \equiv \min _{\partial^{\prime} Q} u_{t} \leq u_{t}(x, t) \leq \max _{\partial^{\prime} Q} u_{t}=\mu_{1}, \quad(x, t) \in \bar{Q}$, if $g_{t} \equiv 0$;
(b) $\quad \nu_{2} \equiv \min _{\partial^{\prime} Q} u_{t} \leq u_{t}(x, t) \leq \mu_{2}(t), \quad(x, t) \in \bar{Q}$, with $\mu_{2}(t)$ from (2.7), if $g_{t} \leq 0$.

For a complete investigation of the problem (1), (2), we need to have some bounds for the values of $f(k(u))(z), z \in \bar{Q}$. In virtue of (1), the equality $f(k(u))=u_{t} / \sqrt{1+u_{x}^{2}}+g$ and Theorem 2 with $\mathcal{F}\left(u_{x}, u_{x x}\right)=f(k(u))$ we come to the following conclusions.

If $\inf _{Q} g \geq 0, \nu_{1} \geq 0$ and $g_{t} \leq 0$ in $Q$, then

$$
\begin{align*}
f(k(u)) & =\frac{u_{t}}{\sqrt{1+u_{x}^{2}}}+g \geq \frac{1}{\sqrt{1+u_{x}^{2}}}\left(\nu_{2}+\inf _{Q} g\right)  \tag{2.8}\\
& \geq \frac{\nu_{1}}{\sqrt{1+M_{1}^{2}}} \equiv \nu_{3}
\end{align*}
$$

with $M_{1}$ from (4) of Sec. 1. Under the same hypothesis about $g$ the majorant $\mu_{2}(t)$ in (2.7) is nonnegative and therefore

$$
\begin{equation*}
f(k(u))=\frac{u_{t}}{\sqrt{1+u_{x}^{2}}}+g \leq \mu_{2}(t)+\sup _{Q} g \leq \sup _{t \in[0, T]} \mu_{2}(t)+\sup _{Q} g \equiv \mu_{3} \tag{2.9}
\end{equation*}
$$

So, if $\inf _{Q} g \geq 0, \nu_{1}>0$ and $g_{t} \leq 0$ we have

$$
\begin{equation*}
0<\nu_{3} \leq f(k(u))(z) \leq \mu_{3} \tag{2.10}
\end{equation*}
$$

Note that if $\nu_{2}=\min _{\partial^{\prime} Q} u_{t} \geq 0$ then instead of (2.8) there is another minorant for $f$ that does not require the condition $\inf _{Q} g \geq 0$, namely,

$$
\begin{equation*}
f(k(u)) \geq \frac{\nu_{2}}{\sqrt{1+M_{1}^{2}}}+\inf _{Q} g \equiv \widetilde{\nu}_{3} \quad \text { if } \nu_{2}=\min _{\partial^{\prime} Q} u_{t} \geq 0 \tag{2.11}
\end{equation*}
$$

Under the conditions of Theorem 1, we have thus found some positive bounds $\nu_{3}$ and $\mu_{3}$ for $f(k(u))(z)$. The inequality $f(k(u))(z) \geq \nu_{3}>0$ guarantees that $k(u)(z)$ in the course of evolution never leaves the cone $\Gamma_{m}$ of ellipticity for $f=f_{m}$.

In the next section we will make use of

$$
\begin{equation*}
\nu_{4} \leq f(k(u)) \leq \mu_{4}, \quad z \in \bar{Q} \tag{2.12}
\end{equation*}
$$

for the solution $u(z)$.

## 3. Bounds for second derivatives

Let $u$ be a smooth admissible solution of (1) with $f$ satisfying (5), and let the majorants $M_{k}$ in (4) and constants $\nu_{4}, \mu_{4}$ in (2.12) be known. We require additionally that

$$
\begin{equation*}
S_{1}(k)=\sum_{i=1}^{n} k_{i} \geq \Phi(f(k)), \quad k \in \mathcal{D} \tag{3.1}
\end{equation*}
$$

with a nondecreasing continuous function $\Phi: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$. This and (2.12) imply

$$
\begin{equation*}
S_{1}(k(u))(z) \geq \Phi\left(\nu_{4}\right) \equiv c_{1}, \quad z \in \bar{Q} \tag{3.2}
\end{equation*}
$$

If we find a majorant $c_{2}$ in

$$
\begin{equation*}
\sup _{z \in Q} k_{i}(u)(z) \leq c_{2}, \quad i=1, \ldots, n \tag{3.3}
\end{equation*}
$$

then we can conclude from (3.2) and (3.3) that

$$
\begin{equation*}
-k_{i}(u)(z) \leq \sum_{j \neq i} k_{j}(u)(z)-c_{1} \leq(n-1)\left|c_{2}\right|+\left|c_{1}\right|, \quad i=1, \ldots, n \tag{3.4}
\end{equation*}
$$

Now a majorant $c$ in

$$
\begin{equation*}
\sup _{Q}\left|u_{x x}\right| \leq c \tag{3.5}
\end{equation*}
$$

is calculated elementarily.
To find $c_{2}$ in (3.3), we use the invariance of the left-hand side of (1) with respect to the choice of cartesian coordinates in the space $\mathbb{E}^{n+1}$ of variables $\left(x, x_{0}\right)$. As above, we consider $t$ in $u(x, t)$ as a parameter and associate with $u(\cdot, t)$ the surface $\mathcal{T}_{t}$ in $\mathbb{E}^{n+1}$ determined by the equation

$$
x_{0}=u(x, t), \quad x \in \bar{\Omega} .
$$

Fix a point $P^{0} \in \mathcal{T}_{t^{0}}$ in $\mathbb{E}^{n+1}$ with coordinates $\left(x^{0}, u^{0}=u\left(x^{0}, t^{0}\right)\right), x^{0} \in \Omega$, $t^{0} \in(0, T]$, and denote by $\nu^{0}$ the unit normal to $\mathcal{T}_{t^{0}}$ at $P^{0}$ directed according to
increasing $x_{0}$, i.e.,

$$
\nu^{0}=\nu\left(\mathcal{T}_{t^{0}}\right)\left(P^{0}\right)=\sum_{i=1}^{n}\left(\frac{-u_{x_{i}}}{\sqrt{1+u_{x}^{2}}}\right)\left(x^{0}, t^{0}\right) e_{i}+\left(\frac{1}{\sqrt{1+u_{x}^{2}}}\right)\left(x^{0}, t^{0}\right) e_{0} .
$$

Here $e_{1}, \ldots, e_{n}, e_{0}$ is the orthogonal basis in $\mathbb{E}^{n+1}$ corresponding to the coordinates $x_{1}, \ldots, x_{n}, x_{0}$. Choose another orthogonal basis $\xi_{1}, \ldots, \xi_{n}, \xi_{0}$ with $\xi_{0}=\nu^{0}$. The matrix $B=\left(b_{\alpha \beta}\right)$ with $b_{\alpha \beta}=\left(\varepsilon_{\alpha}, e_{\beta}\right), \alpha, \beta=1, \ldots, n, 0$, is orthogonal and its elements $b_{0 \beta}=\left(\varepsilon_{0}, e_{\beta}\right)=\left(\nu^{0}, e_{\beta}\right)$ are fixed. Later we will define the other rows of $B$ in a proper way, always keeping the orthogonality of $B$. For now they are taken arbitrary.

Denote by $\left(y_{1}, \ldots, y_{n}, y_{0}\right)$ the cartesian coordinates in $\mathbb{E}^{n+1}$ corresponding to $\xi_{1}, \ldots, \xi_{n}, \xi_{0}$, so that we have in $\mathbb{E}^{n+1}$ the relation

$$
\begin{equation*}
\sum_{i=1}^{n}\left(x_{i}-x_{i}^{0}\right) e_{i}+\left(x_{0}-u^{0}\right) e_{0}=\sum_{i=1}^{n} y_{i} \xi_{i}+y_{0} \xi_{0} \tag{3.6}
\end{equation*}
$$

The surface $\mathcal{T}_{t}$ with $t$ near $t^{0}$ can be represented near $P^{0}$ by the equation

$$
\begin{equation*}
y_{0}=v(y, t), \quad y=\left(y_{1}, \ldots, y_{n}\right) \tag{1}
\end{equation*}
$$

where the function $v$ is determined by the identity

$$
\begin{equation*}
\sum_{i=1}^{n}\left(x_{i}-x_{i}^{0}\right) e_{i}+\left(u(x, t)-u^{0}\right) e_{0}=\sum_{i=1}^{n} y_{i} \xi_{i}+v(y, t) \xi_{0} . \tag{2}
\end{equation*}
$$

In fact, it follows from (3.72) that

$$
\begin{gather*}
x_{i}-x_{i}^{0}=\sum_{j=1}^{n} b_{j i} y_{j}+b_{0 i} v(y, t), \quad i=1, \ldots, n  \tag{1}\\
u(x, t)-u^{0}=\sum_{i=1}^{n} b_{i 0} y_{i}+b_{00} v(y, t) \tag{2}
\end{gather*}
$$

and

$$
\begin{gather*}
y_{i}=\sum_{j=1}^{n} b_{i j}\left(x_{j}-x_{j}^{0}\right)+b_{i 0}\left(u(x, t)-u^{0}\right), \quad i=1, \ldots, n,  \tag{1}\\
v(y, t)=\sum_{j=1}^{n} b_{0 j}\left(x_{j}-x_{j}^{0}\right)+b_{00}\left(u(x, t)-u^{0}\right) . \tag{2}
\end{gather*}
$$

Relations ( $3.9_{k}$ ) determine the functions

$$
\begin{equation*}
Y_{i}(x, t)=\sum_{j=1}^{n} b_{i j}\left(x_{j}-x_{j}^{0}\right)+b_{i 0}\left(u(x, t)-u^{0}\right), \quad i=1, \ldots, n, \tag{3.10}
\end{equation*}
$$

if we consider $u: \bar{Q} \rightarrow \mathbb{R}^{1}$ as a given function, and they also determine the functions $X_{j}$ such that

$$
\begin{equation*}
y_{i}=b_{i j}\left(X_{j}(y, t)-x_{j}^{0}\right)+b_{i 0}\left[u(X(y, t), t)-u^{0}\right], \quad i=1, \ldots, n, \tag{1}
\end{equation*}
$$

for all $y$ and $t$ near $y=0, t=t^{0}$. The function $v$ from (3.7 $)$ is determined by the equality

$$
\begin{equation*}
v(y, t)=b_{0 j}\left[X_{j}(y, t)-x_{j}^{0}\right]+b_{00}\left[u(X(y, t), t)-u^{0}\right] . \tag{2}
\end{equation*}
$$

By the orthogonality of $B$, from $\left(3.11_{1}\right),\left(3.11_{2}\right)$, we get the equalities

$$
\begin{gather*}
X_{i}(y, t)-x_{i}^{0}=\sum_{j=1}^{n} b_{j i} y_{j}+b_{0 i} v(y, t), \quad i=1, \ldots, n  \tag{1}\\
u(X(y, t), t)-u^{0}=\sum_{i=1}^{n} b_{i 0} y_{i}+b_{00} v(y, t) \tag{2}
\end{gather*}
$$

which are identities near $y=0$ and $t=t^{0}$. We can consider them also as the identities

$$
\begin{gather*}
x_{i}-x_{i}^{0}=\sum_{j=1}^{n} b_{j i} Y_{j}(x, t)+b_{0 i} v(Y(x, t), t),  \tag{1}\\
u(x, t)-u^{0}=\sum_{i=1}^{n} b_{i 0} Y_{i}(x, t)+b_{00} v(Y(x, t), t) \tag{2}
\end{gather*}
$$

with respect to $(x, t)$ near $\left(x^{0}, t^{0}\right)$, since the vector-valued function $Y \equiv$ $\left(Y_{1}, \ldots, Y_{n}\right)(x, t)$ is inverse to $X=\left(X_{1}, \ldots, X_{n}\right)(y, t)$.

So, for $t$ close to $t^{0}$, the surface $\mathcal{T}_{t}$, near $P^{0}=\left(x^{0}, u^{0}\right)$, has the equation

$$
\begin{equation*}
y_{0}=v(y, t) \tag{3.14}
\end{equation*}
$$

where $v$ is determined by $\left(3.11_{2}\right)$. Note that the new variables $y$ and $v$ depend on $z^{0}$, but we will choose $z^{0}$ at a step and will not change it after that. Therefore, we do not indicate explicitly the dependence of the new variables on $z^{0}$.

The quotient $u_{t} / \sqrt{1+u_{x}^{2}}$ is invariant with respect to the change of variables $(x, u, t) \rightarrow(y, v, t)$, i.e.,

$$
\begin{equation*}
\frac{u_{t}}{\sqrt{1+u_{x}^{2}}}(x, t)=\frac{v_{t}}{\sqrt{1+v_{y}^{2}}}(y, t) \tag{1}
\end{equation*}
$$

for the corresponding $(x, t) \leftrightarrow(y, t)$, since both sides of $\left(3.15_{1}\right)$ give the velocity of the shift of $\mathcal{T}_{t}$ in the direction of the normal $\nu\left(\mathcal{T}_{t}\right)$ to $\mathcal{T}_{t}$. This will also follow from our subsequent calculations.

The analytical expressions for the principal curvatures $k_{i}\left(\mathcal{T}_{t}\right)$ of $\mathcal{T}_{t}$ in variables $\left(x, x_{0}\right)$ and ( $y, y_{0}$ ) also coincide, so we have

$$
\begin{equation*}
f(k(u))(x, t)=f(k(v))(y, t) \tag{2}
\end{equation*}
$$

But $g(x, t)$ in the new variables will depend on $v$, namely,
(3.16) $g\left(x_{1}, \ldots, x_{n}, t\right)$

$$
=g\left(x_{1}^{0}+b_{j 1} y_{j}+b_{01} v(y, t), \ldots, x_{n}^{0}+b_{j n} y_{j}+b_{0 n} v(y, t), t\right) \equiv \widehat{g}(y, t, v)
$$

So, equation (1) in the new variables has the form

$$
\begin{equation*}
-\frac{v_{t}(y, t)}{\sqrt{1+v_{y}^{2}}}+f(k(v))(y, t)=\widehat{g}(y, t, v) . \tag{3.17}
\end{equation*}
$$

Later, we will have to differentiate (3.17) with respect to $y_{m}$ and twice with respect to $y_{1}$. For this purpose, let us calculate these derivatives for $\widehat{g}$ :

$$
\begin{equation*}
\widehat{g}_{y_{m}}=g_{x_{i}} \frac{\partial x_{i}}{\partial y_{m}}=g_{x_{i}}\left(b_{m i}+v_{y_{m}} b_{0 i}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{g}_{y_{1} y_{1}}=g_{x_{i} x_{j}}\left(b_{1 j}+v_{y_{1}} b_{0 j}\right)\left(b_{1 i}+v_{y_{1}} b_{0 i}\right)+g_{x_{i}} v_{y_{1} y_{1}} b_{0 i} \tag{2}
\end{equation*}
$$

Using (3.10), we also calculate the relations between $u_{i} \equiv u_{x_{i}}$ and $v_{j} \equiv v_{y_{j}}$. From (3.132), it follows that

$$
u_{j}=b_{i 0} \frac{\partial Y_{i}}{\partial x_{j}}+b_{00} v_{i} \frac{\partial Y_{i}}{\partial x_{j}}=\left(b_{i 0}+b_{00} v_{i}\right)\left(b_{i j}+u_{j} b_{i 0}\right)
$$

and from this and orthogonality of $B$ we get
$u_{j}\left(1-b_{i 0} b_{i 0}-b_{00} b_{i 0} v_{i}\right)=u_{j}\left(b_{00}-b_{i 0} v_{i}\right) b_{00}=b_{i 0} b_{i j}+b_{00} b_{i j} v_{i}=\left(-b_{0 j}+b_{i i} v_{i}\right) b_{00}$
and therefore

$$
\begin{equation*}
u_{j}=\frac{-b_{0 j}+b_{i j} v_{i}}{b_{00}-b_{i 0} v_{i}}, \quad j=1, \ldots, n \tag{3.19}
\end{equation*}
$$

Introducing the vector fields

$$
\begin{equation*}
\nu(v)=-\frac{v_{i}}{\sqrt{1+v_{y}^{2}}} \varepsilon_{i}+\frac{1}{\sqrt{1+v_{y}^{2}}} \varepsilon_{0} \tag{3.20}
\end{equation*}
$$

we rewrite (3.19) in the form

$$
\begin{equation*}
u_{j}=-\frac{\left(\nu(v), e_{j}\right)}{\left(\nu(v), e_{0}\right)}, \quad j=1, \ldots, n \tag{3.21}
\end{equation*}
$$

From (3.21), it follows that

$$
\begin{equation*}
1+u_{x}^{2}=\left(\nu(v), e_{0}\right)^{-2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\sqrt{1+u_{x}^{2}}}=\left(\nu(v), e_{0}\right)=\frac{1}{\sqrt{1+v_{y}^{2}}}\left(b_{00}-b_{j 0} v_{j}\right) . \tag{2}
\end{equation*}
$$

For $v_{t}$ we have from $\left(3.11_{2}\right)$,

$$
\begin{aligned}
v_{t} & =b_{0 j} \frac{\partial X_{j}}{\partial t}+b_{00}\left(u_{j} \frac{\partial X_{j}}{\partial t}+u_{t}\right)=\left(b_{0 j}+b_{00} u_{j}\right) b_{0 j} v_{t}+b_{00} u_{t} \\
& =\left(1-b_{00}^{2}+b_{00} b_{0 j} u_{j}\right) v_{t}+b_{00} u_{t} .
\end{aligned}
$$

After reduction of similar terms this gives

$$
u_{t}=\left(b_{00}-b_{0 j} u_{j}\right) v_{t}
$$

and from this and (3.21) we get

$$
u_{t}=\frac{\left(\nu(v), \varepsilon_{0}\right)}{\left(\nu(v), e_{0}\right)} v_{t} .
$$

Using this relation, $\left(3.22_{2}\right)$ and (3.20), we find

$$
u_{t}\left(\nu(v), e_{0}\right)=\frac{u_{t}}{\sqrt{1+u_{x}^{2}}}=v_{t}\left(\nu(v), \varepsilon_{0}\right)=\frac{v_{t}}{\sqrt{1+v_{y}^{2}}}
$$

i.e. $\left(3.15_{1}\right)$.

Now we start to calculate the majorant $c_{2}$ in (3.3). Let $z^{0}=\left(x^{0}, t^{0}\right)$ be a point of $\bar{Q}$ where the maximum $M$ of all functions

$$
\begin{equation*}
h(\eta) k_{i}(u)(z), \quad i=1, \ldots, n, z \in \bar{Q} \tag{1}
\end{equation*}
$$

is realized. Here $h(\cdot)$ is a smooth function of

$$
\begin{equation*}
\eta=\frac{1}{\sqrt{1+u_{x}^{2}}} \tag{2}
\end{equation*}
$$

It will be chosen later and defined on the interval

$$
\begin{equation*}
\left[b_{1}, 1\right], \quad b_{1}=\frac{1}{\sqrt{1+M_{1}^{2}}} \tag{3}
\end{equation*}
$$

It is sufficient to consider the case when $z^{0} \in Q$, since for $z^{0} \in \partial^{\prime} Q$ a majorant for $h(\eta) k_{i}(u)$, and therefore for $k_{i}(u)$, is given by (4).

So, let $z^{0}=\left(x^{0}, t^{0}\right)$ lie in $Q$. We now use the new variables $y, t, v$ described above, choosing for the origin of coordinates $\left(y, y_{0}\right)$ the point $P^{0}=\left(x^{0}, u^{0} \equiv\right.$ $\left.u\left(x^{0}, t^{0}\right)\right)$ of $\mathbb{E}^{n+1}$ and as $\varepsilon_{0}$ the unit normal

$$
\nu^{0}=-\sum_{i=1}^{n} \frac{\stackrel{\circ}{u}_{i}}{\sqrt{1+\stackrel{\circ}{u}_{x}^{2}}} e_{i}+\frac{1}{\sqrt{1+\stackrel{\circ}{u}_{x}^{2}}} e_{0}, \quad \stackrel{\circ}{u}_{i} \equiv u_{x_{i}}\left(x^{0}, t^{0}\right),
$$

to $\mathcal{T}_{t^{0}} \subset \mathbb{E}^{n+1}$ at the point $P^{0}$. We direct the other basis vectors $\varepsilon_{1}, \ldots, \varepsilon_{n}$ in $\mathbb{E}^{n+1}$ along the lines of the principal curvatures of $\mathcal{T}_{t^{0}}$ at $P^{0}$, and enumerate them in such a way that $k_{1}(u)\left(z^{0}\right) \geq k_{i}(u)\left(z^{0}\right), i=2, \ldots, n$.

It is sufficient to consider the case when

$$
\begin{equation*}
k_{1}(u)\left(z^{0}\right) \equiv v_{y_{1} y_{1}}\left(0, t^{0}\right)>0 \tag{3.24}
\end{equation*}
$$

In the new variables the functions from $\left(3.23_{1}\right)$ have the form

$$
\begin{equation*}
h\left(\frac{1}{\sqrt{1+v_{y}^{2}}}\left(b_{00}-b_{j 0} v_{j}\right)\right) k_{i}(v)(y, t), \quad i=1, \ldots, n \tag{3.25}
\end{equation*}
$$

They are defined in the vicinity

$$
\widehat{Q}_{\varepsilon}=\left\{(y, t):|y| \leq \varepsilon, t \in\left[t^{0}-\varepsilon, t^{0}\right]\right\}
$$

of $z^{0} \leftrightarrow\left(y=0, t=t^{0}\right) \equiv \widehat{z}^{0}$ and have their local maximum at $\widehat{z}^{0}$.
The same local maximum $M>0$ and also at the same $\widehat{z}^{0}$ is realized by the function

$$
\begin{equation*}
\Psi(y, t)=\left[h(\eta) \frac{v_{11}}{\gamma(v)\left(1+v_{1}^{2}\right)}\right](y, t), \quad \gamma(v)=\sqrt{1+v_{y}^{2}} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=\frac{1}{1+v_{y}^{2}}\left(b_{00}-b_{j 0} v_{j}\right)=\frac{1}{1+u_{x}^{2}} \tag{2}
\end{equation*}
$$

and, as above, $v_{i}=v_{y_{i}}, v_{i j}=v_{y_{i} y_{j}}$. In contrast to $k_{i}(v)$, the smoothness of $\Psi$ depends only on the smoothness of $v$, and therefore at the maximum point $\widehat{z}^{0}$ of $\Psi$ we have

$$
\begin{equation*}
(\ln \Psi)_{y_{i}}=0, \quad(\ln \Psi)_{t} \geq 0 \quad \text { and } \quad(\ln \Psi)_{y_{i} y_{i}} \leq 0 \tag{3.27}
\end{equation*}
$$

Let us calculate (3.27) at $\widehat{z}^{0}$, keeping in mind that at $\widehat{z}^{0}$ we have

$$
\begin{equation*}
v_{i}=0, \quad k_{i}(v)=v_{i i}, \quad v_{i j}=v_{i i} \delta_{j}^{i} \tag{3.28}
\end{equation*}
$$

First, we calculate

$$
\begin{gather*}
\partial_{y_{i}} \gamma(v)=\frac{v_{k} v_{k i}}{\gamma(v)}, \quad \partial_{y_{i}} \frac{1}{\gamma(v)}=-\frac{v_{k} v_{k i}}{\gamma(v)^{3}} \\
\eta_{i} \equiv \eta_{y_{i}}=-\frac{v_{k} v_{k i}}{\gamma(v)^{3}}\left(b_{00}-b_{j 0} v_{j}\right)-\frac{1}{\gamma(v)} b_{j 0} v_{j i} \tag{1}
\end{gather*}
$$

From these equalities, it follows that at $\widehat{z}^{0}$,

$$
\begin{equation*}
\partial_{y_{i}} \gamma(v)=0, \quad \partial_{y_{i}} \frac{1}{\gamma(v)}=0, \quad \partial_{y_{i} y_{i}}^{2} \gamma(v)=v_{i i}^{2}, \quad \eta_{i}=-b_{i 0} v_{i i} \tag{2}
\end{equation*}
$$

and also

$$
\begin{equation*}
\eta_{i i} \equiv \eta_{y_{i} y_{i}}=-v_{i i}^{2} b_{00}-b_{j 0} v_{j i i}, \quad \text { where } v_{j i i} \equiv v_{y_{j} y_{i} y_{i}} \tag{3}
\end{equation*}
$$

Now, computing (3.27) and bearing in mind $\left(3.29_{k}\right)$, we obtain at $\widehat{z}^{0}$ the relations

$$
\begin{align*}
(\ln \Psi)_{y_{i}}=\frac{h^{\prime}}{h} \eta_{i}+ & \frac{v_{11 i}}{v_{11}}-\frac{v_{k} v_{k i}}{1+v_{y}^{2}}-\frac{2 v_{1} v_{1 i}}{1+v_{1}^{2}}=0  \tag{1}\\
0 \geq(\ln \Psi)_{y_{i} y_{i}}= & \frac{h^{\prime}}{h} \eta_{i i}+\left(\frac{h^{\prime}}{h}\right)^{\prime} \eta_{i}^{2}+\frac{v_{11 i i}}{v_{11}}-\frac{v_{11 i}^{2}}{v_{11}^{2}} \\
& -\frac{\sum_{k=1}^{n} v_{k i}^{2}}{1+v_{y}^{2}}-\frac{2 v_{1 i}^{2}}{1+v_{1}^{2}}
\end{align*}
$$

$$
\begin{equation*}
0 \leq(\ln \Psi)_{t}=\frac{h^{\prime}}{h} \eta_{t}-\frac{v_{11 t}}{v_{11}} \tag{3}
\end{equation*}
$$

These relations and (3.28) give us

$$
\begin{gather*}
\frac{v_{11 i}}{v_{11}}=-\frac{h^{\prime}}{h} \eta_{i}=\frac{h^{\prime}}{h} b_{i 0} v_{i i}  \tag{1}\\
\frac{v_{11 i i}}{v_{11}} \leq \frac{h^{\prime}}{h}\left(v_{i i}^{2} b_{00}+b_{j 0} v_{j i i}\right)-\left[\left(\frac{h^{\prime}}{h}\right)^{\prime}-\left(\frac{h^{\prime}}{h}\right)^{2}\right] b_{i 0}^{2} v_{i i}^{2}+v_{i i}^{2}+2 v_{1 i}^{2} \\
=v_{i i}^{2}\left\{b_{00} \frac{h^{\prime}}{h}-b_{i 0}\left[\left(\frac{h^{\prime}}{h}\right)^{\prime}-\left(\frac{h^{\prime}}{h}\right)^{2}\right]+1\right\}+\frac{h^{\prime}}{h} b_{j 0} v_{j i i}+2 v_{1 i}^{2}
\end{gather*}
$$

and

$$
\begin{equation*}
-\frac{v_{11 t}}{v_{11}} \leq-\frac{h^{\prime}}{h} b_{j 0} v_{j t} \tag{3}
\end{equation*}
$$

Let us now make use of the equation (3.17) for $v$ and the representation

$$
\begin{equation*}
f(k(v))=F(A(v)), \tag{3.32}
\end{equation*}
$$

where

$$
A(v)=\frac{1}{\gamma(v)} v_{(y y)}, \quad \gamma(v)=\sqrt{1+v_{y}^{2}}
$$

and

$$
\begin{equation*}
v_{(y y)}=g\left(v_{y}\right)^{-1 / 2} v_{y y} g\left(v_{y}\right)^{-1 / 2} \tag{3.33}
\end{equation*}
$$

(see the end of Sec. 1). The numbers $k_{i}(v)(y, t)$ are the eigenvalues of the matrix $A(v)(y, t)$. The elements of the matrix $g\left(v_{y}\right)^{-1 / 2}$ have the form

$$
\left(g\left(v_{y}\right)^{-1 / 2}\right)_{i j}=\delta_{j}^{i}-\frac{v_{i} v_{j}}{\gamma(v)(1+\gamma(v))}
$$

and the elements $v_{(i j)}$ of the matrix $v_{(y y)}$ are

$$
\begin{equation*}
v_{(i j)}=v_{i j}-\frac{v_{i} v_{k} v_{k j}}{\gamma(v)(1+\gamma(v))}-\frac{v_{j} v_{k} v_{k i}}{\gamma(v)(1+\gamma(v))}+\frac{v_{i} v_{j} v_{k} v_{l} v_{k l}}{[\gamma(v)(1+\gamma(v))]^{2}} \tag{3.34}
\end{equation*}
$$

It is also known that (a) convexity of $f(k)$ with respect to $k$ implies convexity of $F(A)$ with respect to $A$, and (b) at a point $A \in M_{\text {sym }}^{n \times n}$ with $A$ diagonal, the
matrix $\partial F(A) / \partial A$ is diagonal with elements $\partial F(A) / \partial A_{i j}$. (These facts have been noticed and used, for example, in [1], [2].)

At $\widehat{z}^{0}$ we have

$$
\begin{gather*}
\gamma(v)=1, \quad A(v)=v_{(y y)}=v_{y y}=\left(\begin{array}{ccc}
v_{11} & & 0 \\
& \ddots & \\
0 & & v_{n n}
\end{array}\right), \quad k_{i}=v_{i i}  \tag{3.35}\\
\frac{\partial F(A)}{\partial A_{i j}}=\frac{\partial F(A)}{\partial A_{i i}} \delta_{i}^{j}=\frac{\partial f(k)}{\partial k_{i}} \delta_{j}^{i} \equiv f^{i}(k) \delta_{j}^{i} .
\end{gather*}
$$

Let us introduce the notation

$$
\begin{equation*}
F^{i}=\frac{\partial F(A)}{\partial A_{i i}}\left(\widehat{z}^{0}\right)=f^{i}(k)\left(\widehat{z}^{0}\right) \equiv f^{i} \tag{3.36}
\end{equation*}
$$

Below, we also use

$$
\begin{align*}
\partial_{y_{k}} v_{(i j)} & =v_{i j k}, \\
\partial_{y_{1} y_{1}}^{2} v_{(i i)} & =v_{i i 11}-2 v_{i 1} v_{11} v_{1 i}=v_{i i 11}-2 v_{11}^{3} \delta_{i}^{1} \quad \text { at } \widehat{z}^{0}, \tag{3.37}
\end{align*}
$$

where $v_{i j k l}=\partial_{y_{i} y_{j} y_{k} y_{l}}^{4} v$.
We rewrite equation (3.17) in the form

$$
\begin{equation*}
-v_{t}+\gamma(v) F\left(\frac{1}{\gamma(v)} v_{(y y)}\right)=\widehat{g}(y, t, v) \gamma(v) \tag{3.38}
\end{equation*}
$$

and differentiate it with respect to $y_{m}$ :

$$
\begin{equation*}
-v_{t m}+\gamma \frac{\partial F(A)}{\partial A_{i j}} \partial_{y_{m}}\left(\frac{1}{\gamma} v_{(i j)}\right)+\partial_{y_{m}} \gamma F=\partial_{y_{m}}(\widehat{g} \gamma), \tag{3.39}
\end{equation*}
$$

where $A=\frac{1}{\gamma(v)} v_{(y y)}$. At $\widehat{z}^{0},(3.39)$ has the form

$$
\begin{equation*}
-v_{t m}+F^{i} v_{(i i) m}=\partial_{y_{m}} \widehat{g} \tag{3.40}
\end{equation*}
$$

Now we differentiate (3.39) for $m=1$ with respect to $y_{1}$ and write the result at $\widehat{z}^{0}$, keeping in mind (3.28) and (3.35):

$$
\begin{align*}
-v_{t 11}+F^{i} v_{(i i) 11}+\frac{\partial^{2} F\left(v_{(y y)}\right)}{\partial v_{(i j)} \partial v_{(k l)}} v_{(i j) 1} v_{(k l) 1}+\gamma_{11}(F- & \left.F^{i} v_{i i}\right)  \tag{3.41}\\
& =\partial_{y_{1} y_{1}}^{2} \widehat{g}+\widehat{g} \gamma_{11}
\end{align*}
$$

Here we have used the notations

$$
v_{(i j) 1}=\partial_{y_{1}} v_{(i j)}, \quad v_{(i l) 11}=\partial_{y_{1}}^{2} v_{(i l)}, \quad \gamma_{11}=\partial_{y_{1}}^{2} \gamma
$$

and later we will take into account that $\gamma_{11}=v_{11}^{2}>0$ at $\widehat{z}^{0}$. By concavity of $F(A)$, (3.41) implies the inequality

$$
\begin{equation*}
j_{1} \equiv-v_{t 11}+F^{i} v_{(i i) 11}+v_{11}^{2}\left(F-F^{i} v_{i i}\right) \geq \partial_{y_{1} y_{1}}^{2} \widehat{g}+\widehat{g} v_{11}^{2} \equiv j_{2} \tag{3.42}
\end{equation*}
$$

By $\left(3.31_{k}\right)$ and $\left(3.18_{k}\right)$,

$$
\begin{equation*}
\partial_{y_{m}} \widehat{g}\left(\widehat{z}^{0}\right)=b_{m i} g_{i}\left(z^{0}\right), \quad \text { where } g_{i}=\partial_{x_{i}} g \tag{1}
\end{equation*}
$$

and
$\left(3.43_{2}\right)$

$$
\begin{aligned}
& j_{2}=g_{i j}\left(z^{0}\right) b_{1 i} b_{1 j}+g_{i}\left(z^{0}\right) b_{0 i} v_{11}\left(\widehat{z}^{0}\right)+g\left(z^{0}\right) v_{11}^{2}\left(\widehat{z}^{0}\right), \\
& \text { where } g_{i j}=\partial_{x_{i} x_{j}}^{2} g .
\end{aligned}
$$

So, (3.40) gives the equality

$$
\begin{equation*}
-v_{t m}+F^{i} v_{(i i) m}=b_{m i} g_{i}\left(z^{0}\right) \quad \text { at } \widehat{z}^{0} . \tag{3.44}
\end{equation*}
$$

Using (3.31 $)$ and (3.37), we deduce from (3.42) that

$$
\begin{aligned}
j_{2} \leq j_{1} & \leq-\frac{h^{\prime}}{h} b_{j 0} v_{j t} v_{11}+F^{i}\left(v_{i i 11}-2 v_{11}^{3} \delta_{i}^{1}\right)+v_{11}^{2}\left(F-F^{i} v_{i i}\right) \\
& =-\frac{h^{\prime}}{h} b_{j 0} v_{j t} v_{11}+F^{i} v_{i i 11}-2 F^{1} v_{11}^{3}+v_{11}^{2}\left(F-F^{i} v_{i i}\right)
\end{aligned}
$$

From this, $\left(3.31_{2}\right)$ and $F^{i}>0$ we get the inequality

$$
\begin{align*}
j_{2} \leq & -\frac{h^{\prime}}{h} b_{j 0} v_{j t} v_{11}+F^{i} v_{i i}^{2} v_{11}\left(b_{00} \frac{h^{\prime}}{h}+1\right)  \tag{3.45}\\
& -\sum_{i=1}^{n} F^{i} v_{i i}^{2} v_{11} b_{i 0}^{2}\left[\left(\frac{h^{\prime}}{h}\right)^{\prime}-\left(\frac{h^{\prime}}{h}\right)^{2}\right] \\
& +\frac{h^{\prime}}{h} b_{j 0} v_{11} F^{i} v_{j i i}+v_{11}^{2}\left(F-F^{i} v_{i i}\right) \\
= & \frac{h^{\prime}}{h} b_{j 0} v_{11}\left(-v_{j t}+F^{i} v_{j i i}\right)+F^{i} v_{i i}^{2} v_{11}\left(b_{00} \frac{h^{\prime}}{h}+1\right) \\
& -\sum_{i=1}^{n} F^{i} v_{i i}^{2} v_{11} b_{i 0}^{2}\left[\left(\frac{h^{\prime}}{h}\right)^{\prime}-\left(\frac{h^{\prime}}{h}\right)^{2}\right]+v_{11}^{2}\left(F-F^{i} v_{i i}\right) .
\end{align*}
$$

Using (3.44) and (3.37), we exclude from (3.45) the terms with $v_{j t}$ and $v_{j i i}$ and obtain an inequality containing only the space derivatives of $v$ of the first and second orders. Namely,

$$
\begin{align*}
j_{2}= & g_{i j} b_{1 i} b_{i j}+g_{i} b_{0 i} v_{11}+g v_{11}^{2}  \tag{3.46}\\
\leq & \frac{h^{\prime}}{h} b_{j 0} v_{11} g_{i} b_{j i}-\sum_{i=1}^{n} F^{i} v_{i i}^{2} v_{11} b_{i 0}^{2}\left[\left(\frac{h^{\prime}}{h}\right)^{\prime}-\left(\frac{h^{\prime}}{h}\right)^{2}\right] \\
& -H_{0} F^{i} v_{i i}^{2} v_{11}+v_{11}^{2}\left(F-F^{i} v_{i i}\right),
\end{align*}
$$

where

$$
\begin{equation*}
H \equiv H(\eta)=-b_{00} \frac{h^{\prime}(\eta)}{h(\eta)}-1 \tag{1}
\end{equation*}
$$

and
$\left(3.47_{2}\right) \quad H_{0}=H\left(\eta^{0}\right), \quad \eta^{0}=\eta\left(\widehat{z}^{0}\right)=\frac{1}{\sqrt{1+u_{x}^{2}\left(z^{0}\right)}} \in\left[b_{1}, 1\right], \quad b_{1}=\frac{1}{\sqrt{1+M_{1}^{2}}}$.
We choose for $h(\eta)$ the solution

$$
\begin{equation*}
h(\eta)=\frac{1}{\eta-b}, \quad b \in\left(0, b_{1}\right) \tag{3.48}
\end{equation*}
$$

of the equation $\left(h^{\prime} / h\right)^{\prime}-\left(h^{\prime} / h\right)^{2}=0$ (precisely this function $h$ was used in [2] for the estimation of second derivatives of solutions to the stationary problem $(1),(2))$. Such an $h$ is positive on $\left[b_{1}, 1\right]$,

$$
H_{0}=H\left(\eta^{0}\right)=\frac{b_{00}}{\eta^{0}-b}-1=\frac{\eta^{0}}{\eta^{0}-b}-1=\frac{b}{\eta^{0}-b} \geq \frac{b}{1-b} \geq 0
$$

as $b_{00}=\left(\varepsilon_{0}, e_{0}\right)=1 / \sqrt{1+\stackrel{\circ}{u}_{x}^{2}}=\eta^{0}$, and, in addition,

$$
\left|\frac{h^{\prime}\left(\eta^{0}\right)}{h\left(\eta^{0}\right)}\right|=\frac{1}{\eta^{0}-b} \leq \frac{1}{b_{1}-b}
$$

By all this, we obtain from (3.46) the relations

$$
\begin{align*}
v_{11}^{2}\left(g-F+F^{i} v_{i i}+H_{0}\right. & \left.F^{i} v_{i i}^{2} v_{11}^{-1}\right)  \tag{3.49}\\
& \leq-g_{j i} b_{1 i} b_{1 j}-g_{i} b_{0 i} v_{11}+\frac{1}{b_{1}-b} v_{11}\left|b_{j 0} g_{i} b_{j i}\right| \\
& \leq c_{3}\left(1+v_{11}\right)
\end{align*}
$$

with a $c_{3}=c_{3}(b)$ under control. Let us introduce the functions

$$
\begin{equation*}
j_{3}(k, b)=-f(k)+f^{i}(k) k_{i}+\frac{b}{1-b} f^{i}(k) k_{i}^{2} k_{1}^{-1} \tag{3.50}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{4}\left(z^{0}, b\right)=g\left(z^{0}\right)+j_{3}\left(k(u)\left(z^{0}\right), b\right) \tag{3.51}
\end{equation*}
$$

We consider them for $b \in\left(0, b_{1}\right)$ and for
(3.52) $k \in \widehat{\Gamma}=\widehat{\Gamma}\left(\nu_{4}, \mu_{4}\right)$

$$
=\left\{k: k \in \Gamma, \nu_{4} \leq f(k) \leq \mu_{4}, k_{1} \geq 1, k_{1} \leq k_{i}, i=1, \ldots, n\right\},
$$

where $\Gamma$ is a domain of ellipticity of $f$, i.e. where (5) of Sec. 1 is satisfied.
If we can guarantee a positive minorant $\nu_{5}$ in

$$
\begin{equation*}
j_{4}\left(z^{0}, b\right) \geq \nu_{5}>0 \tag{3.53}
\end{equation*}
$$

for some $b \in\left(0, b_{1}\right)$ and all $z^{0} \in Q$, then we obtain from (3.49) the estimate

$$
\begin{equation*}
k_{1}\left(z^{0}\right) \leq c_{4}, \quad c_{4}=\frac{c_{3}+\sqrt{c_{3}^{2}+4 c_{3} \nu_{5}}}{4 \nu_{5}} \tag{3.54}
\end{equation*}
$$

Let us define the following characteristic of $f$ :

$$
\nu_{6}(b)=\inf _{k \in \widehat{\Gamma}} j_{3}(k, b), \quad b \in\left(0, b_{1}\right)
$$

If

$$
\begin{equation*}
\inf _{Q} g+\nu_{6}(b) \equiv \nu_{7}>0 \tag{3.55}
\end{equation*}
$$

then (3.53) holds with $\nu_{5}=\nu_{7}$. If $f(k)$ is a 1-homogeneous function of $k$, then

$$
\begin{equation*}
j_{3}(k, b)=\frac{b}{1-b} f^{i}(k) k_{i}^{2} k_{1}^{-1}>0, \quad k \in \widehat{\Gamma} \tag{1}
\end{equation*}
$$

and

$$
\nu_{6}(b)=\frac{b}{1-b} \inf _{k \in \widehat{\Gamma}} f^{i}(k) k_{i}^{2} k_{1}^{-1}
$$

Thus, the inequality (3.55) will be satisfied if

$$
\begin{equation*}
\inf _{Q} g>0 \tag{2}
\end{equation*}
$$

For $f(k)=f_{m}(k)=S_{m}(k)^{1 / m}, m>1$, we have the estimate

$$
\begin{equation*}
f_{m}^{i}(k) \equiv \frac{\partial f_{m}(k)}{\partial k_{i}} \geq \frac{1}{m} \cdot \frac{f_{m}(k)}{f_{1}(k)} \quad \text { for all } k \in \Gamma_{m} \tag{3.57}
\end{equation*}
$$

which is easily derived from the consequence $S_{m}(k) / S_{1}(k) \leq \partial_{k_{i}} S_{m}(k)$ of the fact that the ratio $S_{m}(k) / S_{1}(k)$ is an increasing function of any $k_{i}$ ([9]). Using it and

$$
\frac{\sum_{j} k_{j}^{2}}{\sum_{j} k_{j}} k_{1}^{-1} \geq \frac{1}{\sqrt{n}}
$$

we obtain the estimates

$$
\begin{equation*}
j_{3}(k, b)=\frac{b}{1-b} f_{m}^{i}(k) k_{i}^{2} k_{1}^{-1} \geq \frac{b}{1-b} \cdot \frac{1}{m \sqrt{n}} f_{m}(k) \geq \frac{b}{1-b} \cdot \frac{\nu_{4}}{m \sqrt{n}} \tag{1}
\end{equation*}
$$

for $k$ in

$$
\begin{equation*}
\Gamma_{m}\left(\nu_{4}, \mu_{4}\right)=\left\{k: k \in \Gamma_{m}, \nu_{4} \leq f_{m}(k) \leq \mu_{4}\right\} \tag{2}
\end{equation*}
$$

Under the hypothesis of Theorem 1, we have proved the positivity of $\nu_{4}$, and therefore condition (3.53) for $f=f_{m}$ will be satisfied if

$$
\begin{equation*}
\inf _{Q} g+\frac{b}{1-b} \cdot \frac{\nu_{4}}{m \sqrt{n}} \equiv \nu_{8}>0 \tag{3.59}
\end{equation*}
$$

Let us mention that in the stationary case

$$
\begin{equation*}
f(k)(x)=g(x),\left.\quad u\right|_{\partial \Omega}=\varphi, \quad x \in \Omega \subset \mathbb{R}^{n} \tag{3.60}
\end{equation*}
$$

we have

$$
j_{4}=g-f(k)+f^{i}(k) k_{i}+\frac{b}{1-b} f^{i}(k) k_{i}^{2} k_{1}^{-1} \geq f^{i}(k) k_{i}, \quad k \in \Gamma, k_{1}>0
$$

and the hypothesis

$$
\begin{equation*}
f^{i}(k) k_{i} \geq c_{0}>0 \tag{3.61}
\end{equation*}
$$

for $k \in \Gamma\left(\nu_{4}, \mu_{4}\right) \equiv\left\{k: k \in \Gamma, \nu_{4} \leq f(k) \leq \mu_{4}\right\}$ just corresponds to hypothesis (8) from Introduction of [2]. It guarantees (3.53) with $\nu_{5}=c_{0}$.

Finally, let us show how to calculate a majorant $c_{2}$ in (3.3), having (3.54) at hand. If

$$
\sup _{z \in Q, i=1, \ldots, n} \frac{k_{i}(u)}{\eta-b} \equiv M
$$

is achieved at a point $z^{0} \in Q$, then we have found the estimate (3.54) and hence

$$
M=\Psi\left(z^{0}\right)=\left(h(\eta) k_{1}\right)\left(z^{0}\right) \leq \frac{c_{4}}{b_{1}-b}
$$

In this case, for all $z \in \bar{Q}$ and any $i=1, \ldots, n$,

$$
\frac{c_{4}}{b_{1}-b} \geq M \geq\left(\frac{k_{i}(u)}{\eta-b}\right)(z) \geq \frac{k_{i}(u)(z)}{1-b}
$$

In the other case, when the supremum $M$ is achieved at $\partial^{\prime} Q$, it does not exceed a constant $c_{5}$, determined by majorants $M_{1}$ and $M_{2}$ of $\sup _{Q}\left|u_{x}\right|$ and $\sup _{\partial^{\prime} Q}\left|u_{x x}\right|$, which we suppose in this work to be known. Hence

$$
k_{i}(u)(z) \leq c_{5}(1-b)
$$

Thus, in any case we have

$$
\begin{equation*}
\sup _{z \in Q, i=1, \ldots, n} k_{i}(u)(z) \leq c_{2}=(1-b) \max \left\{\frac{c_{4}}{b_{1}-b}, c_{5}\right\} . \tag{3.62}
\end{equation*}
$$

So we have proved the following theorem:
ThEOREM 3. Let $u$ be an admissible solution of (1), for which constants $\nu_{4}$ and $\mu_{4}$ in (2.12) and majorants $M_{1}$ and $M_{2}$ for $\sup _{Q}\left|u_{x}\right|$ and $\sup _{\partial^{\prime} Q}\left|u_{x x}\right|$ respectively are known. If we also know a positive minorant $\nu_{5}$ in (3.53), then we can calculate a majorant $c$ for $\sup _{Q}\left|u_{x x}\right|$.

## References

[1] L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), 261-301.
[2] $\qquad$ , Nonlinear second-order elliptic equations V. The Dirichlet problem for Weingarten hypersurfaces, Comm. Pure Appl. Math. 41 (1988), 47-70.
[3] S. Helgason, Groups and Geometric Analysis, Academic Press, 1984.
[4] N. M. Ivochkina, A description of the stability cones generated by differential operators of Monge-Ampère type, Mat. Sb. 22 (1983), 265-275 (Russian); English transl. in Math. USSR-Sb. 50 (1985).
[5] , Solution of the Dirichlet problem for the equation of curvature of order $m$, Dokl. Akad. Nauk SSSR 299 (1988), 35-38 (Russian); English transl. in Soviet Math. Dokl. 37 (1989).
[6] $\qquad$ , Solution of the Dirichlet problem for the equation of curvature of order $m$, Mat. Sb. 180 (1989), 867-887 (Russian); English transl. in Math. USSR-Sb. 67 (1990).
[7] , The Dirichlet problem for m-th-order curvature equations, Algebra i Analiz 2 (1990), 192-217 (Russian); English transl. in Leningrad Math. J. 2 (1991).
[8] N. M. Ivochkina and O. A. Ladyzhenskaya, The first initial boundary value problem for evolutionary equations generated by symmetric functions of the principal curvatures, Dokl. Ross. Akad. Nauk 340 (1995), 155-157. (Russian)
[9] N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rational Mech. Anal. 111 (1990), 153-179.

Nina M. Ivochkina
St.-Petersburg State University of Architecture and Civil Engineering
2-Krasnoarmeiskaya, 4
198005 St.-Petersburg, RUSSIA

Ol'GA A. Ladyzhenskaya
Steklov Mathematical Institute
Fontanka 27
191011 St.-Petersburg D-11, RUSSIA


[^0]:    ${ }^{1}$ The first part of the hypothesis b) in Theorem 1 of [8] can be eliminated for $T<\infty$.

