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RELAXED YANG–MILLS FUNCTIONAL OVER 4-MANIFOLDS

Takeshi Isobe

Dedicated to Louis Nirenberg on the occasion of his 70th birthday

We give suitable completions of the space of principal G-bundles over M and
the space of smooth connections on them, where G is a compact, simple, simply
connected Lie group and M is a 4-dimensional compact orientable manifold. We
also introduce a natural energy defined in such spaces and consider variational
problems on them.

0. Introduction

We begin by considering the following example.
Let M be an n-dimensional compact, orientable Riemannian manifold, G a

simple, simply connected compact Lie group and P → M a principal G-bundle.
We denote by A(P ) the space of smooth connections on P . For A ∈ A(P ), we
define the Yang–Mills energy YM(A) by the formula

YM(A) =
∫

M

|FA|2 ∗ 1,

where FA = dA + A∧A is the curvature of A. The pointwise norm on FA is the
Aut(P )-invariant norm on the vector bundle Λ2T ∗M ⊗Ad(P ) which is induced
from the adjoint action invariant norm on g = the Lie algebra of G, and the
Riemannian metric of M . (See [5] for foundations of Yang–Mills theory.)

Let us consider the following problem.
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236 T. Isobe

Problem A. Does there exist Â ∈ A(P ) such that YM(Â) = inf{YM(A) :
A ∈ A(P )} ≡ m(P )? In other words, does YM attain its inf in A(P )?

The most natural approach to the above problem is the direct methods in the
calculus of variations, that is, we consider minimizing sequences {Ai} ⊂ A(P ),
i.e., YM(Ai) → m(P ). If there exists a subsequence {Ani

} ⊂ {Ai} such that
{Ani

} converges to some connection A ∈ A(P ) in some sense, then A will be a
minimizing connection. But, in general, this method does not work well in the
space A(P ). The problem is that, in general, we cannot extract a subsequence
which converges (in C∞-topology) to some connection in A(P ). C∞-topology is
too strong to obtain the solution of Problem A.

For this reason, some people consider Problem A in the Sobolev category
instead of C∞-category.

We denote by L2
1(A(P )) the space of L2

1-connections on P , where Lp
k is the

Sobolev space of functions with k derivatives which are p-integrable. We denote
by L2

2(M ; Aut(P )) the space of L2
2-gauge transformations.

By the Sobolev embedding theorem, L2
2 is embedded in C0 if and only if

dim M ≤ 3. In this case, ϕ ∈ L2
2(M ; Aut(P )) does not change the topology of P .

Moreover, when dim M ≤ 3, the Sobolev category is a suitable class for Problem
A, that is, the following theorem of Uhlenbeck [13] holds:

Theorem 0 (Global weak compactness theorem of Uhlenbeck). Suppose
dim M ≤ 3. Let {Ai} ⊂ A(P ) be such that supi≥1

∫
M
|FAi

|2∗1 < ∞. Then there
is a subsequence {Ani} ⊂ {Ai} and {ϕi} ⊂ L2

2(M ; Aut(P )) (↪→ C0(M ; Aut(P )))
such that {ϕ∗i Ani

} converges weakly in L2
1(M).

In the setting of the above theorem, we assume ϕ∗i Ani ⇀ A weakly in L2
1(M).

By the Sobolev embedding theorem, L2
1 ↪→ L6 in dimensions 2 and 3, and we

have (passing to a subsequence if necessary)

Fϕ∗i Ani
= ϕ∗i FAni

⇀ FA weakly in L2(M).

Thus by the weak lower semicontinuity of the L2-norm we obtain∫
M

|FA|2 ∗ 1 ≤ lim inf
i→∞

∫
M

|FAni
|2 ∗ 1.

This global weak compactness theorem does not hold when the dimension of M

is greater than 3. See [9] how weak compactness breaks down in the critical
dimension dim M = 4. (We remark that when dim M ≥ 4, L2

2 is not embedded
in C0.) We may, therefore, reasonably conclude that the Sobolev class is not
suitable for Problem A when the dimension of M is greater than or equal to 4.
The Sobolev class is too weak to obtain the solution of Problem A.
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The purpose of this paper is to give suitable classes of principal bundles and
connections for considering Problem A in the critical dimension dim M = 4, and
to give a natural energy on such connections.

For dim M = 5, related problems are considered in [8].
Our basic approach to Problem A is the following. For simplicity, throughout

this paper we only consider the case G = SU(2), but our results and arguments
also hold with slight modifications when G is a simple, simply connected compact
Lie group.

Let P → M be a principal SU(2)-bundle, where M is a 4-dimensional com-
pact orientable Riemannian manifold. Principal SU(2)-bundles {P} over M are
classified by the 2nd Chern class C2(P ) ∈ H4(M ; Z) of the associated vector
bundles {η(P )}, where η(P ) = P ×SU(2) su(2) and SU(2) acts on su(2) = the
Lie algebra of SU(2) via the adjoint action. That is, the isomorphism class of
P ↔ C2(P ) ∈ H4(M ; Z) is a 1-1 correspondence. See, for example, [5, Appendix
E]. By the Chern–Weil formula [7], C2(P ) is given by

C2(P ) =
[
− 1

8π2
tr(FA ∧ FA)

]
,

where A ∈ A(P ).
Our idea is to “complete” the space

P = {C2(P ) ∈ H4(M ; Z) : P → M a principal SU(2)-bundle},

using the above fact, by a suitable (weak) topology instead of completing {P},
and we think of this completion P2 as the space of “generalized” principal bun-
dles.

It should be mentioned that similar difficulties occur when we consider the
problem of minimization of the Dirichlet integral of mappings with prescribed
homotopy class between two manifolds. In fact, our motivation comes from works
of Bethuel, Brezis and Coron [2] and Giaquinta, Modica and Souček [6], where
they treat the Dirichlet integral of mappings between two manifolds and obtain
suitable extensions of “maps” (that is, the theory of “cartesian currents” intro-
duced in [6]) and “energies” (that is, the theory of “relaxed energies” introduced
in [2], see also [6]). See [2], [3], [6] and references therein for more details.

This paper is organized as follows: In §1 we introduce a natural topology
in P and a completion P2 of it. We give a characterization of the space P2.
We also introduce the space A(P2) of connections on P2. In §2 we extend the
Yang–Mills functional to the space A(P2) by the method of relaxation. Finally,
in §3 we show that Problem A is always solvable in our setting by the direct
methods of the calculus of variations.
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1. The classes P2 and A(P2)

Let M be a compact orientable Riemannian manifold of dimension 4. We
denote by Pk the space of all principal SU(2)-bundles over M with 2nd Chern
number −k. Any two principal SU(2)-bundles in Pk are isomorphic.

With P ∈ Pk and A ∈ A(P ) we associate C2(A) by the formula

C2(A) =
1

8π2
tr(FA ∧ FA).

(We will not distinguish a cohomology class and its representative.) The co-
homology class of C2(A) is independent of A and in fact

∫
M

C2(A) = k. We
identify P with [C2(A)] ∈ H4(M ; Z). We set P =

⋃
−∞<k<∞ Pk, that is, P is

the space of all principal SU(2)-bundles over M .
For P ∈ P and A ∈ A(P ), we can consider C2(A) ∈ Λ4T ∗M as a Radon

measure on M as follows:
For ϕ ∈ C0(M) we define C2(A) ∈ R(M) by

C2(A)(ϕ) =
∫

M

C2(A) ∧ ϕ,

where R(M) is the space of Radon measures on M .
We denote by Ak the space of C∞-connections on some principal bundle P

in Pk. That is, A ∈ Ak if and only if there exists P ∈ Pk such that A ∈ A(P ).
We also set A =

⋃
−∞<k<∞Ak.

Definition 1.1. We define the space P2
k ⊂ R(M) as follows. ω ∈ P2

k ⊂
R(M) if and only if there exists {Ai} ⊂ Ak such that:

(1) supi≥1

∫
M
|FAi

|2 ∗ 1 < ∞,
(2) 1

8π2 tr(FAi
∧ FAi

) ⇀ ω in the weak∗ topology of R(M).

We also set P2 =
⋃
−∞<k<∞ P2

k .

Remark 1.2. If {Ai} ⊂ Ak satisfies supi≥1

∫
M
|FAi

|2 ∗ 1 < ∞, then{
1

8π2 tr(FAi ∧ FAi)
}

is a bounded sequence in R(M). Thus there exists a sub-
sequence {Ani} ⊂ {Ai} such that

{
1

8π2 tr(FAni
∧ FAni

)
}

converges to some
ω ∈ R(M) in the weak∗ topology of R(M).

First, we examine the structure of P2
k . Our main result is

Theorem 1.3. ω ∈ P2
k if and only if

ω =
1

8π2
tr(FA ∧ FA) +

q∑
j=1

djδaj
,

where
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(1) A is an L2
1-connection on some principal SU(2)-bundle Q → M ,

(2) q, d1, . . . , dq ∈ Z, q ≥ 0,
(3) a1, . . . , aq ∈ M and δaj

is the Dirac measure at aj,
(4) q(Q) +

∑q
j=1 dj = k, where q(Q) is the topological quantum number of

Q, i.e., (−1)× 2nd Chern number of Q.

To prove this theorem, we quote the following two important theorems which
are due to Uhlenbeck [13], [14] and Sedlacek [9].

Theorem 1.4 (Uhlenbeck [13], Sedlacek [9]). Let {Ai} ⊂ Ak(P ) be such
that

sup
i≥1

∫
M

|FAi |2 ∗ 1 < ∞.

Then there exist a1, . . . , ap ∈ M , an open covering {Uα} of M\{a1, . . . , ap} and
sections σα(i) : Uα → P such that {σ∗α(i)Ai} is weakly compact in L2

1(T
∗Uα ⊗

su(2)).

Theorem 1.5 (Uhlenbeck [14]). Let b1, . . . , bq ∈ M . Assume N is confor-
mally equivalent to M \ {b1, . . . , bq}, that is, there exists a conformal diffeomor-
phism f : N → M \ {b1, . . . , bq}. Let Q → N be a principal SU(2)-bundle and
A an L2

1,loc-connection on Q such that FA ∈ L2(Λ2T ∗N ⊗ su(2)). Then there
exist a principal SU(2)-bundle Q̃ → M and an L2

1-connection Ã on Q̃ such that
A is gauge equivalent to f∗Ã over N. In particular, 1

8π2

∫
M

tr(FA ∧ FA) ∈ Z.

Since the proof of Theorem 1.3 is long, we decompose it into four steps. Our
proof is inspired by the proof of Theorem E.1 in [4].

Proof of Theorem 1.3. Step 1. Suppose that {Ai} ⊂ Ak satisfies
supi≥1

∫
M
|FAi

|2 ∗ 1 < ∞. By Theorem 1.4 there exist a1, . . . , ap ∈ M , an
open covering {Uα} of M \ {a1, . . . , ap} and sections σα(i) : Uα → P such that
Aα(i) := σ∗α(i)Ai ⇀ Aα in L2

1(T
∗Uα ⊗ su(2)) for all α.

Let C ⊂ M be a cube such that C ∼= B4 := {x ∈ R4 : |x| < 1}, {ι∗Aα(i)} ⊂
L2

1(Uα ∩ ∂C) and {Fι∗Ai
} ⊂ L2(∂C) are bounded, C contains at most one aj ,

and aj /∈ ∂C for all j. Here ι : ∂C → M is the inclusion.
We first consider the case aj ∈ C.
We define the connection A(i) on P |C × [0, 1]

∣∣
∂(C×[0,1])

→ ∂(C × [0, 1]) as
follows:

We set A∗i := ι∗Ai. Since {FA∗i
} is bounded in L2(Λ2T ∗(∂C)⊗su(2)), by the

global weak compactness theorem of Uhlenbeck, there exists ϕi ∈ L2
2(Λ

2T ∗(∂C)
⊗ su(2)) (↪→ C0(∂C; Aut(P |∂C))) such that

ϕ∗i A
∗
i ⇀ Ã weakly in L2

1(∂C).

On the other hand, there exists ϕ ∈ L2
2(∂C; Aut(P |∂C)) such that ϕ∗(ι∗A) = Ã.

Here A = {Aα}. Since C \ {aj} is diffeomorphic to S3 × (0, 1), ϕi, ϕ can be
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extended to C \ {aj}. We also denote by ϕi, ϕ such extensions. Then ϕi, ϕ ∈
L2

2,loc(C \ {aj}; Aut(P |C\{aj})).
We write

∂(C × [0, 1]) = (C × {0}) ∪ (C × {1}) ∪ (∂C × [0, 1]) = Γ0 ∪ Γ1 ∪ Γ2.

We define A(i) by

A(i) =


ϕ∗A on Γ0,

ϕ∗i Ai on Γ1,

tϕ∗i A
∗
i + (1− t)ϕ∗A∗ on Γ2.

For simplicity we write ϕ∗i A
∗
i = Ãi, ϕ∗A∗ = Ã.

Lemma 1.6. There exist di ∈ Z and K > 0 (independent of i) such that∣∣∣∣ 1
8π2

∫
C

tr(FAi
∧ FAi

)− 1
8π2

∫
C

tr(FA ∧ FA)− di

∣∣∣∣
≤ K

(∫
∂C

|FAi
| · |Ãi − Ã|+

∫
∂C

|FÃ| · |Ãi − Ã|+
∫

∂C

|Ãi − Ã|3
)

.

Proof. Since A = {Aα} ∈ L2
1,loc(C \ {aj}) we have ϕ∗A ∈ L2

1,loc(C \ {aj}).
On the other hand, since FA ∈ L2(C), we have Fϕ∗A = ϕ∗FA ∈ L2(C). In the
same way we obtain ϕ∗i Ai ∈ L2

1,loc(C \ {aj}) and Fϕ∗i Ai
= ϕ∗i FAi

∈ L2(C).
Thus A(i) is a connection over ((C \{aj})×{1})∪((C \{aj})×{0})∪Γ2 and

A(i) ∈ L2
1,loc(((C\{aj})×{1})∪((C\{aj})×{0})∪Γ2), FA(i) ∈ L2(∂(C×[0, 1])).

Therefore by Theorem 1.5 there exists di ∈ Z such that
1

8π2

∫
∂(C×[0,1])

tr(FA(i) ∧ FA(i)) = di.

On the other hand,∫
∂(C×[0,1])

tr(FA(i) ∧ FA(i)) =
∫

C

tr(Fϕ∗i Ai ∧ Fϕ∗i Ai)−
∫

C

tr(Fϕ∗A ∧ Fϕ∗A)

+
∫

∂C×[0,1]

tr(FA(i) ∧ FA(i)).

Thus we get

(1)
∣∣∣∣ 1
8π2

∫
C

tr(FAi
∧ FAi

)− 1
8π2

∫
C

tr(FA ∧ FA)− di

∣∣∣∣
≤

∣∣∣∣ 1
8π2

∫
∂C×[0,1]

tr(FA(i) ∧ FA(i))
∣∣∣∣.

On ∂C × [0, 1], A(i) = tÃi + (1− t)Ã. Therefore we have

FA(i) = tdÃi + (1− t)dÃ + (Ãi − Ã)dt + (tÃi + (1− t)Ã) ∧ (tÃi + (1− t)Ã)

= tF eAi
+ (1− t)F eA + t(t− 1)(Ãi − Ã) ∧ (Ãi − Ã) + (Ãi − Ã)dt.
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Thus we get

FA(i) ∧ FA(i) = tF eAi
∧ (Ãi − Ã)dt + (1− t)F eA ∧ (Ãi − Ã)dt

+ t(t− 1)(Ãi − Ã) ∧ (Ãi − Ã) ∧ (Ãi − Ã)dt

+ t(Ãi − Ã) ∧ dt ∧ F eAi
+ (1− t)(Ãi − Ã) ∧ dt ∧ F eA

+ t(t− 1)(Ãi − Ã) ∧ dt ∧ (Ãi − Ã) ∧ (Ãi − Ã).

From (1) we obtain∣∣∣∣ 1
8π2

∫
C

tr(FAi ∧ FAi)−
1

8π2

∫
C

tr(FA ∧ FA)− di

∣∣∣∣
≤ K

(∫
∂C

|F eAi
| · |Ãi − Ã|+

∫
∂C

|F eA| · |Ãi − Ã|+
∫

∂C

|Ãi − Ã|3
)

.

This completes the proof. �

In the above argument we assume aj ∈ C. But the result of Lemma 1.6 also
holds when aj /∈ C. The proof is essentially the same and we omit it.

Step 2. We recall that C2(Ai) = 1
8π2 tr(FAi ∧ FAi) ∈ R(M) is defined by

C2(Ai)(ϕ) =
1

8π2

∫
M

tr(FAi ∧ FAi) ∧ ϕ

for ϕ ∈ C0(M). Since {FAi} is bounded in L2(Λ2T ∗M ⊗ su(2)) we have

sup
i≥1

|C2(Ai)|(M) < ∞,

where |C2(Ai)| is the total variation measure of C2(Ai). Therefore we may
assume (passing to a subsequence if necessary) that

C2(Ai) ⇀ µ, |C2(Ai)| ⇀ ν

weak∗ in R(M) for some µ, ν ∈ R(M).

Definition 1.7. We say that a “cube” C ⊂ M is good for {Ai} if:

(i) C is diffeomorphic to B4,
(ii) {ι∗Aα(ni)} is bounded in L2(∂C∩Uα) and {FAni

} is bounded in L2(∂C)
for some subsequence {ni} ⊂ {i}, where ι : ∂C ↪→ M is the inclusion,

(iii) ν(∂C) = 0,
(iv) ∂C ∩ {a1, . . . , ap} = ∅.

Let C ⊂ M be a good cube.

Lemma 1.8. We have

µ(C)− 1
8π2

∫
C

tr(FA ∧ FA) ∈ Z.
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Proof. By Lemma 1.6 there exists di ∈ Z such that

(2)
∣∣∣∣C2(Ai)(C)− 1

8π2

∫
C

tr(FA ∧ FA)− di

∣∣∣∣
≤ K

(∫
∂C

|F eAi
| · |Ãi − Ã|+

∫
∂C

|F eA| · |Ãi − Ã|+
∫

∂C

|Ãi − Ã|3
)

.

Since Ãi ⇀ Ã weakly in L2
1(∂C) and L2

1(∂C) ↪→compact Lp(∂C) for 1 ≤ p < 6 (by
the Sobolev embedding theorem), using Hölder’s inequality we see that the right
hand side of (2) converges to 0 as i → ∞. On the other hand, since C is good,
we have C2(Ai)(C) → µ(C) as i →∞. Therefore

µ(C)− 1
8π2

∫
C

tr(FA ∧ FA) ∈ Z. �

Step 3. We next examine the atomic part of µ. Our main result is

Lemma 1.9. The atomic part of the measure µ is
q∑

l=1

dlδbl

for some dl ∈ Z, 0 ≤ q < ∞ and bl ∈ M .

Proof. We fix a ∈ M . Let Cj ⊂ M (1 ≤ j < ∞) be such that a ∈ Cj for all
j, Cj is good for all j and meas(Cj) → 0 as j →∞. We note that there always
exists such a sequence {Cj} for any a ∈ M . By Lemma 1.8 we have

µ(Cj)−
1

8π2

∫
Cj

tr(FA ∧ FA) = dj ∈ Z.

Letting j →∞ in the above equality we obtain µ({a}) ∈ Z. Since |µ|(M) < ∞,
there exist at most finitely many bj ∈ M (1 ≤ j ≤ q), 0 ≤ q < ∞, which are
atom points of µ. This completes the proof. �

Step 4.

Lemma 1.10. We have

µ =
1

8π2
tr(FA ∧ FA) +

q∑
j=1

djδbj .

Proof. We set

m = µ− 1
8π2

tr(FA ∧ FA)−
q∑

j=1

djδbj
.

We prove m ≡ 0. For a good cube C ⊂ M , by Lemma 1.8 we have

(3) m(C) ∈ Z.

Since m has no atomic part, by (3) there exists ε > 0 such that m(C) = 0 for
all good cubes C ⊂ M with meas(C) < ε.

We take r > 0 such that r � ε1/4 and a ∈ M . We claim
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Claim. For a.e. x ∈ M , x−Cr is a good cube, where Cr = {x ∈ M : |xi| < r,
i = 1, . . . , 4} (x = (xi) is the normal coordinate of M centered at a).

Proof of Claim. We check the conditions (i)–(iv) of Definition 1.7. (i) is
clear. For (ii), we set

g(i) = |∇A(i)|2 + |A(i)|2 + |FAi
|2.

Since supi≥1

∫ r

0
(
∫

∂(x−Cr)
g(i)) dxj < ∞ for any 1 ≤ j ≤ 4, by Fatou’s lemma and

Fubini’s theorem for a.e. x ∈ M we get

lim inf
i→∞

∫
∂(x−Cr)

g(i) < ∞.

Thus (ii) holds. The verification of (iii) and (iv) is standard. The proof of the
claim is complete.

By the above claim we obtain χCr ∗m(x) = 0 for a.e. x ∈ M, where χCr is
the characteristic function of Cr. On the other hand, since r−4χCr

∗ m ⇀ m

weak∗ in R(M) we obtain m ≡ 0. Therefore we finally obtain

C2(Ai) ⇀
1

8π2
tr(FA ∧ FA) +

q∑
j=1

djδbj

weak∗ in R(M). Here A ∈ L2
1,loc(M \ {a1, . . . , ap}) and FA ∈ L2(Λ2T ∗M ⊗

su(2)). Thus by Theorem 1.5 there exist a principal SU(2)-bundle Q → M

and an L2
1-connection Ã on Q such that A and Ã are gauge equivalent over

M \ {a1, . . . , ap}. Since tr(FA ∧ FA) = tr(F eA ∧ F eA) in R(M), we may identify
A with Ã.

Obviously we have

k = C2(Ai)(M) → 1
8π2

∫
M

tr(FA ∧ FA) +
q∑

j=1

dj

= q(Q) +
q∑

j=1

dj .

Conversely, for a given principal SU(2)-bundle Q → M , an L2
1-connection A on

Q, q ≥ 0, d1, . . . , dq ∈ Z and b1, . . . , bq ∈ M satisfying (1)–(4) of Theorem 1.3,
we must show that there exist {Ai} ⊂ Ak such that

sup
i≥1

∫
M

|FAi |2 ∗ 1 < ∞,

1
8π2

tr(FAi
∧ FAi

) ⇀
1

8π2
tr(FA ∧ FA) +

q∑
j=1

djδbj

weak∗ in R(M). This follows from the same construction as in the proof of
Theorem 2.2 in §2, Step 2. This completes the proof of Theorem 1.3. �
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For the later purpose, we give the following corollary of Theorem 1.3.

Corollary 1.11. Under the same notations as in Theorem 1.3 and its
proof, assume |FAi

|2 ⇀ ω weak∗ in R(M). Then

ω ≥ |FA|2 + 8π2

q∑
j=1

|dj |δbj
.

Proof. Since FAi ⇀ FA weakly in L2(Λ2T ∗M ⊗ su(2)), by the weak lower
semicontinuity of the L2-norm we have ω ≥ |FA|2. On the other hand, for any
ϕ ∈ C0(M), we have∣∣∣∣∫

M

tr(FAi
∧ FAi

) ∧ ϕ

∣∣∣∣ ≤ ∫
M

|FAi
|2|ϕ| ∗ 1.

Letting i →∞ in the above inequality we obtain∣∣∣∣∫
M

tr(FA ∧ FA) ∧ ϕ + 8π2

q∑
j=1

djϕ(bj)
∣∣∣∣ ≤ ∫

M

|ϕ| dω.

We take ϕ = ϕn such that 0 ≤ ϕn ≤ 1 and ϕn ↘ χ{bj} to obtain

ω({bj}) ≥ 8π2|dj | (1 ≤ j ≤ q).

Since |FA| ⊥ δbj
for any 1 ≤ j ≤ q, we get

ω ≥ |FA|2 + 8π2

q∑
j=1

|dj |δbj
.

This completes the proof. �

Definition 1.12.

(1) For ω ∈ P2
k , ω = 1

8π2 tr(FA ∧ FA) +
∑q

j=1 djδbj
, where A is an L2

1-
connection on a principal SU(2)-bundle Q → M , we write

[ω] = ([Q], (dj , bj)1≤j≤q),

where [Q] is the isomorphism class of principal SU(2)-bundles with
Q ∈ [Q].

(2) We define [P2
k ] = {[ω] : ω ∈ P2

k}.
(3) For [ω] = ([Q], (dj , bj)1≤j≤q) ∈ [P2

k ] we define the space A2
k([ω]) of L2

1-
connections on [ω] by A ∈ A2

k([ω]) if and only if A is an L2
1-connection

on some principal SU(2)-bundle Q′ → M , where Q′ ∈ [Q].
(4) We define A2

k =
⋃

[ω]∈[P2
k ]A2

k([ω]).

Remark 1.13. We can view [ω] = ([Q], (dj , bj)1≤j≤q) ∈ [P2
k ] as follows:

[ω] is obtained by attaching principal SU(2)-bundles Pj → S4 to Q at bj ,
where the 2nd Chern number of Pj is −dj and we identify bj with the south pole
of S4.
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This can be explained by the following consideration. We identify bj with
the south pole of S4, djδbj with dj{bj} ∈ H0(S4; Z) and dj{bj} with its Poincaré
dual djη{bj} ∈ H4(S4; Z), where η{bj} is the Poincaré dual of bj in S4. Since η{bj}

generates H4(S4; Z), djη{bj} corresponds to the isomorphism class of principal
SU(2)-bundles over S4 with 2nd Chern number −dj . Therefore [ω] can be viewed
as mentioned above.

For ω ∈ P2
k , ω = 1

8π2 tr(FA ∧ FA) +
∑q

j=1 djδbj
, we define ‖ω‖ by

‖ω‖ = ‖FA‖L2(M) + |ω|(M),

where |ω|(M) = total variation of ω in M .
In the next theorem we show that P2

k is bounded weakly compact with respect
to the “norm” ‖ · ‖.

Theorem 1.14. Let {ωi} ⊂ P2
k , ωi = 1

8π2 tr(FAi
∧ FAi

) +
∑qi

j=1 di
jδbi

j
, be

such that supi≥1 ||ωi|| < ∞. Then there exists a subsequence {ωni
} ⊂ {ωi} such

that ωni
⇀ ω weak∗ in R(M) for some ω ∈ P2

k .

Proof. Since supi≥1 ‖ωi‖ < ∞, we have

(a) supi≥1

∫
M
|FAi |2 ∗ 1 < ∞,

(b) supi≥1

∑qi

j=1 |di
j | < ∞.

By (a), as in the proof of Theorem 1.3, there exist a principal SU(2)-bundle
Q → M , an L2

1-connection A on Q, d̂1, . . . , d̂l ∈ Z and b̂1, . . . , b̂l ∈ M such that

1
8π2

tr(FAi
∧ FAi

) ⇀
1

8π2
tr(FA ∧ FA) +

l∑
m=1

d̂mδbbm

weak∗ in R(M).
On the other hand, by (b), supi≥1 qi < ∞. (We remark that we may assume

all di
j 6= 0.) Thus, passing to a subsequence if necessary, we may assume qi = q

for all i. Also by (b), supi≥1 di
j < ∞, and we may also assume di

j = dj for
all i. Since M is compact, passing to a subsequence if necessary, we may assume
bi
j → bj ∈ M for all 1 ≤ j ≤ q. Under these conditions we easily see that

ωi ⇀
1

8π2
tr(FA ∧ FA) +

l∑
m=1

d̂mδbbm
+

q∑
j=1

djδbj

weak∗ in R(M). It is also easy to see that

q(Q) +
l∑

m=1

d̂m +
q∑

j=1

dj = k.

This completes the proof. �

Remark 1.15. For ωi = 1
8π2 tr(FAi

∧ FAi
) ∈ P2

k , supi≥1 ‖ωi‖ < ∞ if and
only if supi≥1 ‖FAi

‖L2(M) < ∞.
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2. Relaxed Yang–Mills functional

Let A ∈ A2
k, that is, let A ∈ A2

k([ω]) for some ω ∈ P2
k . Here [ω] =

([Q], (dj , bj)1≤j≤q). We extend the Yang–Mills functional which is defined on
A(P ) (= smooth connections on the principal SU(2)-bundle P ∈ Pk) to A2

k by
the method of relaxation. This is also the Lebesgue extension of the variational
integral

∫
M
|FA|2 ∗ 1.

Definition 2.1. Let A ∈ A2
k be as above. We define the relaxed Yang–Mills

functional YMrel by

YMrel(A) = inf{lim inf
i→∞

YM(Ai) : {Ai} ∈ S},

where {Ai} ∈ S if and only if Ai ∈ A(Pi) for some Pi ∈ Pk and

1
8π2

tr(FAi
∧ FAi

) ⇀ µ +
q∑

j=1

djδbj

and Ai ⇀? A with [µ] = [Q]. Here we use the notation Ai ⇀? A if and only if
there exist a1, . . . , ap ∈ M , an open covering {Uα} of M \ {a1, . . . , ap}, and
sections σα(i) : Uα → Pi such that σ∗α(i)Ai ⇀ Aα weakly in L2

1(Uα), where
A = {Aα}.

For any A ∈ A2
k, there exists {Ai} ∈ S such that {Ai} converges to A in the

above sense. (See the proof of Theorem 2.2 below.)

Theorem 2.2. Let A ∈ A2
k, where A ∈ A2

k([ω]) with ω ∈ P2
k and [ω] =

([Q], (dj , bj)1≤j≤q). Then

YMrel(A) = YM(A) + 8π2

q∑
j=1

|dj |.

Proof. Step 1. We first prove

YMrel(A) ≥
∫

M

|FA|2 ∗ 1 + 8π2

q∑
j=1

|dj |.

Let Ai ∈ A(Pi) (Pi ∈ Pk) be such that

1
8π2

tr(FAi ∧ FAi) ⇀ µ +
q∑

j=1

djδbj , Ai ⇀? A.

Then we must have µ = 1
8π2 tr(FA ∧ FA) as in the proof of Theorem 1.3.

We fix ε > 0 small enough. Then we have

YM(Ai) =
∫

M

|FAi |2 ∗ 1 =
∫

M\
Sq

j=1 Bε(bj)

|FAi |2 ∗ 1 +
∫
Sq

j=1 Bε(bj)

|FAi |2 ∗ 1,

where Bε(bj) is the geodesic ball of radius ε with center at bj ∈ M .
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Since FAi
⇀ FA weakly in L2(Λ2T ∗M ⊗Ad(P )), we have

(4) lim inf
i→∞

∫
M\

Sq
j=1 Bε(bj)

|FAi
|2 ∗ 1 ≥

∫
M\

Sq
j=1 Bε(bj)

|FA|2 ∗ 1.

On the other hand, by Corollary 1.11 we have (passing to a subsequence if
necessary) |FAi

|2 ⇀ ω, where ω satisfies

ω ≥ |FA|2 + 8π2

q∑
j=1

|dj |δbj .

So we have

(5) lim inf
i→∞

∫
Sq

j=1 Bε(bj)

|FAi
|2 ∗ 1 ≥

∫
Sq

j=1 Bε(bj)

|FA|2 ∗ 1 + 8π2

q∑
j=1

|dj |.

Combining (4) and (5) we obtain

(6) lim inf
i→∞

∫
M

|FAi
|2 ∗ 1 ≥

∫
M

|FA|2 ∗ 1 + 8π2

q∑
j=1

|dj |.

Since {Ai} ∈ S is arbitrary we get

YMrel(A) ≥
∫

M

|FA|2 ∗ 1 + 8π2

q∑
j=1

|dj |.

Step 2. Next we show

YMrel(A) ≤
∫

M

|FA|2 ∗ 1 + 8π2

q∑
j=1

|dj |.

For this it is sufficient to show that there exist Ai ∈ A(Pi), where Pi ∈ Pk, such
that

1
8π2

tr(FAi ∧ FAi) ⇀
1

8π2
tr(FA ∧ FA) +

q∑
j=1

djδbj , Ai ⇀∗A

and ∫
M

|FAi
|2 ∗ 1 →

∫
M

|FA|2 ∗ 1 + 8π2

q∑
j=1

|dj |.

We now construct such a sequence. The construction can be summarized as
follows: Ai is constructed by gluing self-dual (if dj < 0) or anti-self-dual (if
dj > 0) connections A?

j on principal SU(2)-bundles Pj → S4 (j = 1, . . . , q) to
A ∈ A2

k(Q) at bj , where Pj is a principal SU(2)-bundle with 2nd Chern number
−dj and we identify bj with the south pole of S4. The details are as follows:

Let Pj → S4 be a principal SU(2)-bundle whose 2nd Chern number is −dj

and A?
j a self-dual (if dj < 0) or anti-self-dual (if dj > 0) connection on Pj .

Let α : S4 → S4 be the inversion of S4 through its equatorial S3, which is
fixed.
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We denote by zj : Bj → R4 the normal coordinate of M , where Bj ⊂ M

is a geodesic ball with Bj ∩ Bl = ∅ (if j 6= l). We identify S4 \ {n} (n is the
north pole of S4) with R4 by the stereographic projection from the north pole.
We also identify Bj with zj(Bj) ⊂ R4 = S4 \ {n} and bj ∈ M with the south
pole s of S4 which is also identified with 0 ∈ R4 by the stereographic projection
from the north pole. For simplicity we assume Bj = {x : |x| < 1} ⊂ R4. Since
Q|Bj

→ Bj and α∗Pj |Bj
→ Bj are trivial, we may glue these principal SU(2)-

bundles over Bj and obtain the principal SU(2)-bundle Q−
∑q

j=1 Pj → M . By
the construction

q

(
Q−

q∑
j=1

Pj

)
= q(Q)−

q∑
j=1

q(Pj) = q(Q) +
q∑

j=1

dj = q(P ) = k.

Next we define a family {Aε} of connections on Q−
∑q

j=1 Pj as follows. First
let % ∈ C∞

0 (R) be such that

%(x) = %(|x|) =

{
0 if |x| ≤ 1/2,

1 if |x| ≥ 1.

We set %ε(x) = %(ε−1/2|x|). We denote by Tε : R4 → R4 the dilation x 7→ εx.
Let θj be the flat product connection on Q−

∑q
j=1 Pj |Bj

= Q− Pj |Bj
.

Over Bj define

(7) Aε = θj + T ∗ε−1 [%εT
∗
ε A + α∗(%εT

∗
ε Ai)].

Set M̂ = M \
⋃q

j=1{p ∈ M : dist(p, bj) > 1/2}. Over M̂ , Q −
∑q

j=1 Pj is

identified with P . Over M̂ we set

(8) Aε = A.

Set B̂j = {x ∈ R4 : |x| < ε3/2/2}. Over B̂j we set

(9) Aε = α∗T ∗ε2Aj .

Then (7)–(9) give a family of connections {Aε} on Q−
∑q

j=1 Pj .
By the same calculations as in Taubes [12] we get

1
8π2

tr(FAε
∧ FAε

) ⇀
1

8π2
tr(FA ∧ FA) +

q∑
j=1

djδbj
,(10)

∫
M

|FAε
|2 ∗ 1 →

∫
M

|FA|2 ∗ 1 +
q∑

j=1

∫
S4
|FA?

j
|2 ∗ 1.(11)

Since A?
j is a self-dual (or anti-self-dual) connection, we have

(12)
∫

S4
|FA?

j
|2 ∗ 1 = 8π2|dj |.
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Combining (11) and (12) we get∫
M

|FAε
|2 ∗ 1 →

∫
M

|FA|2 ∗ 1 + 8π2

q∑
j=1

|dj |.

Since the space of C∞-connections is dense in the L2
1-connections there exist

Ai ∈ A(Pi), Pi ∈ Pk, such that

1
8π2

tr(FAi
∧ FAi

) ⇀
1

8π2
tr(FA ∧ FA) +

q∑
j=1

djδbj
,

∫
M

|FAi
|2 ∗ 1 →

∫
M

|FA|2 ∗ 1 + 8π2

q∑
j=1

|dj |.

Thus we get

YMrel(A) ≤
∫

M

|FA|2 ∗ 1 + 8π2

q∑
j=1

|dj |.

Combining Step 1 and Step 2, we finally obtain

YMrel(A) =
∫

M

|FA|2 ∗ 1 + 8π2

q∑
j=1

|dj |.

This completes the proof. �

In the next theorem we prove that YMrel is weakly lower semicontinuous
with respect to a suitable weak topology.

Theorem 2.3. Let {Ai} ⊂ A2
k and A∞ ∈ A2

k be such that Ai ∈ A2
k([ωi])

(ωi ∈ P2
k) and A∞ ∈ A2

k([ω∞]) (ω∞ ∈ P2
k). Assume ωi = 1

8π2 tr(FAi
∧ FAi

) +∑qi

j=1 di
jδbi

j
, supi≥1 ‖ωi‖ < ∞, ωi ⇀ ω∞ and Ai ⇀? A∞. Then

YMrel(A∞) ≤ lim inf
i→∞

YMrel(Ai).

Proof. This is proved as in the proof of Theorem 1.14. Since supi≥1 ‖ωi‖
< ∞, we have

(a) supi≥1

∫
M
|FAi

|2 ∗ 1 < ∞,
(b) supi≥1

∑qi

j=1 |di
j | < ∞.

As in the proof of Theorem 1.14 there exist a principal SU(2)-bundle Q̂ → M ,
an L2

1-connection Â on Q̂, d̂1, . . . , d̂l ∈ Z and b̂1, . . . , b̂l ∈ M such that

1
8π2

tr(FAi ∧ FAi) ⇀
1

8π2
tr(F bA ∧ F bA) +

l∑
m=1

d̂mδbbm
.



250 T. Isobe

As in the proof of Theorem 1.14 there exist q ∈ Z, c1, . . . , cq ∈ Z and p1, . . . , pq

∈ M such that

(13)
qi∑

j=1

di
jδbi

j
⇀

q∑
j=1

cjδpj
.

Then we have

ω∞ =
1

8π2
tr(FA∞ ∧ FA∞) +

l∑
m=1

d̂mδbbm
+

q∑
j=1

cjδpj
.

Therefore Â = A∞ and

[ω∞] = ([Q∞], (d̂1, . . . , d̂l, c1, . . . , cq; b̂1, . . . , b̂l, p1, . . . , pq)).

We may assume, as in the proof of Theorem 1.14, that qi ≡ q and di
j ≡ cj

(1 ≤ j ≤ q) for all i. Fix ε > 0 small enough. We have

(14)
∫

M

|FAi
|2 ∗ 1 =

∫
M\

Sl
m=1 Bε(bbm)

|FAi
|2 ∗ 1 +

∫
Sl

m=1 Bε(bbm)

|FAi
|2 ∗ 1.

Since FAi
⇀ FA∞ weakly in L2, we get

(15) lim inf
i→∞

∫
M\

Sl
m=1 Bε(bbm)

|FAi
|2 ∗ 1 ≥

∫
M\

Sl
m=1 Bε(bbm)

|FA∞ |2 ∗ 1.

We may assume, passing to a subsequence if necessary, that |FAi
|2 ⇀ ν weak∗

in R(M). By Corollary 1.11, we have

ν ≥ |FA∞ |2 + 8π2
l∑

m=1

|d̂m|δbbm
.

Therefore we obtain

(16) lim inf
i→∞

∫
Sl

m=1 Bε(bbm)

|FAi
|2 ∗ 1 ≥

∫
Sl

m=1 Bε(bbm)

|FA∞ |2 ∗ 1 + 8π2
l∑

m=1

|d̂m|.

From (15) and (16) we get

(17) lim inf
i→∞

∫
M

|FAi
|2 ∗ 1 ≥

∫
M

|FA|2 ∗ 1 + 8π2
l∑

m=1

|d̂m|.

From (13) and (17) we finally obtain

lim inf
i→∞

YMrel(Ai) ≥
∫

M

|FA|2 ∗ 1 + 8π2
l∑

m=1

|d̂m|+ 8π2

q∑
j=1

|cj |

≥ YMrel(A∞).

This completes the proof. �
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3. Minimization problems in A2
k

From Theorems 2.3 and 1.14 we obtain the following existence result.

Theorem 3.1. There exists A ∈ A2
k such that YMrel(A) = inf{YMrel(A) :

A ∈ A2
k} ≡ mk.

Proof. Let {Ai} ⊂ A2
k be a minimizing sequence, i.e.,

YMrel(Ai) → mk as i →∞.

We assume Ai ∈ A2
k([ωi]), ωi = 1

8π2 tr(FAi
∧ FAi

) +
∑qi

j=1 di
jδbi

j
.

Since supi≥1 YMrel(Ai) < ∞, we obtain supi≥1 ‖ωi‖ < ∞. Thus we may
assume, passing to a subsequence if necessary, that ωi ⇀ ω∞ weak∗ in R(M)
for some ω∞ ∈ P2

k and Ai ⇀? A∞ for some A∞ ∈ A2
k([ω∞]) ⊂ A2

k (by Theorem
1.14). By Theorem 2.2 we get

YMrel(A∞) ≤ lim inf
i→∞

YMrel(Ai) ≡ mk.

Therefore A∞ ∈ A2
k is a YMrel-minimizer in A2

k. �

But in general, A∞ obtained above is not a YM-minimizer in A(P ) for some
P ∈ Pk. We next study when A∞ is a classical solution, that is, when A∞ is a
minimizer of YM in A(P ) for some P ∈ Pk. We assume A∞ is an L2

1-connection
on some principal SU(2)-bundle Q∞ → M .

We first prepare some lemmas.

Lemma 3.2. We have mk ≡ inf{YMrel(A) : A ∈ A2
k} = inf{YM(A) : A ∈

A(P ) for some P ∈ Pk}.

Proof. This follows from the proof of Theorem 2.2. �

Lemma 3.3. Let A∞ ∈ A2
k be a YMrel-minimizer obtained by Theorem 3.1.

Assume A∞ ∈ A2
k([ω∞]) for some ω∞ ∈ P2

k . Then A∞ is a YM-minimizer in
the class A2

k([ω∞]).

Proof. Assume to the contrary that A∞ is not a YM-minimizer in
A2

k([ω∞]). Then there exists A ∈ A2
k([ω∞]) and ε > 0 such that

(18) YM(A) < YM(A∞)− ε.

Since C∞-connections are dense in the L2
1-connections and L2

1 ↪→ L4 in dimension
4, we may assume that A is a C∞-connection. In this case, as in the proof of
Theorem 2.2, we find Ai ∈ A(Pi), Pi ∈ Pk such that

YM(Ai) → YM(A) + 8π2

q∑
j=1

|dj | as i →∞,
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where [ω∞] = ([Q∞], (dj , bj)1≤j≤q). So by (18) we obtain

YM(A) + 8π2

q∑
j=1

|dj | < YM(A∞) + 8π2

q∑
j=1

|dj | − ε

= YMrel(A∞)− ε = mk − ε.

By Lemma 3.2 we get mk ≤ mk − ε. This contradiction completes the proof. �

We are now ready to state (and prove) our main theorem in this section.

Theorem 3.4. Let A∞ ∈ A2
k be a YMrel-minimizer in A2

k. Assume that

mk < m` + 8π2|`− k| for |`− k| ≤ |k|, ` 6= k.

Then A∞ ∈ L2
1(A(P )) for some P ∈ Pk and A∞ is a YM-minimizing connection

in L2
1(A(P )).

Proof. Let Q0 = M ×SU(2) → M be the product bundle over M and θ be
a flat connection on it. We fix a point a ∈ M . We set [ω0] = ([Q0], (k, a)) ∈ P2

k .
We denote by ` the topological quantum number of Q∞. Since θ ∈ A([ω0]) ⊂ A2

k,
we obtain

8π2|`− k| ≤ YM(A∞) + 8π2|`− k| ≤ YMrel(A∞) ≤ YMrel(θ) = 8π2|k|.

Thus we get |`− k| ≤ |k|. We shall prove ` = k.
Assume ` 6= k. Then by Lemmas 3.2 and 3.3 we have

m` + 8π2|`− k| ≤ YMrel(A∞) = mk < m` + 8π2|`− k|.

But this is a contradiction. Therefore ` = k, which completes the proof. �

Remark 3.5. (a) We always have mk ≤ m` + 8π2|`− k| for all k, ` ∈ Z.
(b) For A ∈ A(P ), we always have YM(A) ≥ 8π2|k|, where k is the 2nd

Chern number of a principal SU(2)-bundle P → M and equality holds if and
only if A is a self-dual (or anti-self-dual) connection. Of course in this case A is
a YM-minimizer in the class A(P ). The existence of self-dual (or anti-self-dual)
connections is studied in [1], [10] and [11]. See also [5]. Taubes [10] proved the
existence theorem under the assumption that the intersection matrix of M is
positive definite. If M does not satisfy this assumption, in general, there is no
self-dual (or anti-self-dual) connection on P . See [5].

(c) Theorem 3.4 is related to the result of Sedlacek [9, Theorem 7.1]. In our
setting, the existence problem is reduced to the regularity problem.
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