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CONNECTED SUM CONSTRUCTIONS FOR
CONSTANT SCALAR CURVATURE METRICS
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Dedicated to Louis Nirenberg on the occasion of his 70th birthday

We give a general procedure for gluing together possibly noncompact mani-
folds of constant scalar curvature which satisfy an extra nondegeneracy hypoth-
esis. Our aim is to provide a simple paradigm for making “analytic” connected
sums. In particular, we can easily construct complete metrics of constant positive
scalar curvature on the complement of certain configurations of an even num-
ber of points on the sphere, which is a special case of Schoen’s [S1] well-known,
difficult construction. Applications of this construction produces metrics with
prescribed asymptotics. In particular, we produce metrics with cylindrical ends,
the simplest type of asymptotic behaviour. Solutions on the complement of an
infinite number of points are also constructed by an iteration of our construction.

I. Introduction

It is now a well-entrenched procedure in geometric analysis to construct new
solutions to nonlinear PDE by gluing together known solutions: an approxi-
mate solution is constructed, then perturbed to an exact solution using analytic
methods. One of the early spectacular instances of this is Taubes” patching of
instantons [T]. More recent instances are too numerous to list here.
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The geometric problem we wish to examine here is the possibility of gluing
together manifolds of constant scalar curvature satisfying a certain nondegener-
acy condition to obtain a new constant scalar curvature metric on the connected
sum. The precise notion of nondegeneracy will be given in §2 below, but when
the manifolds are compact, possibly with boundary, it coincides with the invert-
ibility of the Jacobi operator (which is weaker than stability). The main result
is:

Theorem. Let (X1, g1) and (X2, g2) be any two manifolds, possibly with
boundary, with complete metrics g1, g2 of constant scalar curvature n(n − 1).
Suppose also that the metrics gi satisfy the nondegeneracy condition (2.12) and
either (2.15) or (2.16)–(2.17) below. Then for any points pi ∈ Xi, the connected
sum X1#εX2 obtained by excising small ε-balls around the pi and identifying
boundaries, carries a complete nondegenerate metric gε of constant scalar cur-
vature n(n− 1).

The problem of gluing nondegenerate compact constant scalar curvature
manifolds has already been studied by Joyce [J], so our primary interest is with
noncompact manifolds. Furthermore, we will focus exclusively on manifolds with
constant positive scalar curvature (CPSC). The simplest of these that we wish to
treat as “summands” to be glued are the Delaunay metrics on the complement
of two points in the sphere Sn. These are conformally equivalent to elements of
an explicit one-parameter family of rotationally symmetric metrics interpolating
between the cylinder and an infinite bead of spheres strung out along a common
axis. These metrics satisfy the nondegeneracy condition, and the metrics we
construct on the connected sum of any finite (or even infinite) number of these
are conformally flat, hence may be uniformized and regarded as complete metrics
on Sn \Λ, where Λ is a discrete collection of points of even cardinality. Complete
CPSC metrics on Sn \ Λ, for Λ finite, were originally constructed in Schoen’s
well-known and difficult paper [S1]. One motivation for our construction is to
provide a simple proof of a special case of his result. The solutions of this type
which we construct here are called dipole metrics, because their singular sets Λ
are widely separated pairs of closely spaced points.

One contribution of this paper is a general formulation of nondegeneracy of
the scalar curvature operator on manifolds with complete CPSC metrics. The
importance of the nondegeneracy hypothesis is clear, for example, in the anal-
ysis of the moduli space MΛ of complete CPSC metrics on Sn \ Λ, where Λ
is a submanifold. When any component of Λ has positive dimension, MΛ is
infinite-dimensional [MPa1], but when Λ is a finite set of points, MΛ is a finite-
dimensional real analytic set [MPU]. If g ∈ MΛ is a nondegenerate solution,
then in a neighborhood of it, MΛ is a smooth (in fact, real analytic) mani-
fold. In particular, when Λ is finite, this neighborhood is of dimension equal
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to the cardinality of Λ. Unfortunately, we had previously been unable to es-
tablish the nondegeneracy of the solutions constructed in [S1], so a number of
simple statements about the moduli space theory remained hypothetical. The
nondegeneracy of our dipole solutions clarify many of these moduli space issues.
This is discussed further in §4. Even when Λ is positive-dimensional, nondegen-
eracy has important ramifications for the Dirichlet problem parametrizing the
infinite-dimensional moduli space MΛ.

It is possible, in certain circumstances, to glue metrics not satisfying the
nondegeneracy conditions. The main instance is Schoen’s construction [S1] men-
tioned earlier, cf. also [P1] for an analogous construction in the compact case.
The summands in these constructions are standard spheres, for which the Jacobi
operator is definitely not invertible. In a forthcoming paper [MPa2], a new and
simpler proof of Schoen’s theorem will be given; the simplification relies on the
observation that here too there is an underlying nondegenerate gluing procedure.

It is well known that there are close relationships between the problems
concerning CPSC metrics and constant mean curvature (CMC) surfaces in R3.
Indeed, closely related in form to [S1], but substantially different in many tech-
nical details, is Kapouleas’ famous construction [K] of CMC surfaces, both com-
pact and noncompact, in R3. It is possible to adapt the ideas here to construct
noncompact CMC surfaces; these surfaces are topologically identical, but ge-
ometrically quite different from many of the surfaces obtained by Kapouleas.
Because of the simplicity of the CPSC construction, relative to that for CMC
surfaces, we defer the CMC construction to a subsequent paper.

In §2 we first discuss the main examples of nondegenerate CPSC metrics and
then, motivated by these examples, give an abstract definition of nondegeneracy.
Next, in §3, we use this to prove the main gluing theorem. In §4 we apply this
to the special case where the summands in the gluing construction are Delaunay
metrics on the cylinder, and the ramifications of this theorem for the moduli
space theory of [MPU]. We also introduce here the “unmarked moduli space”
of CPSC metrics on the complement of any collection of k distinct points in Sn

and prove, analogously to [MPU], that it is a real analytic set; finally, we relate
the nondegeneracy of elements in this unmarked moduli space to the problem of
showing that solutions other than the ones obtained in §3 by the gluing theorem
are nondegenerate.

II. Nondegeneracy: examples and definitions

In this section we set up the notation used for the remainder of the paper
and then give a precise definition of the nondegeneracy of solutions. We first
motivate this definition by describing in some detail the key examples which led
to it.
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Let (M, g0) be a fixed complete Riemannian manifold, which we do not
assume to have constant positive scalar curvature. Suppose g is a complete
CPSC manifold conformal to g0. We express the conformal factor by writing
g = u4/(n−2)g0. Let R(g0) and R(g) denote the scalar curvatures of g0 and g.
Then it is well known that

(2.1) ∆g0u−
n− 2

4(n− 1)
R(g0)u+

n− 2
4(n− 1)

R(g)u(n+2)/(n−2) = 0.

Denote the left side of this equation, when R(g) is replaced by the constant R,
by Ng0(u). Much of the analysis of CPSC metrics near g revolves around the
linearization L of Ng0 at u:

Lg0v =
∂

∂t

∣∣∣∣
t=0

Ng0(u+ tv)(2.2)

= ∆g0v −
n− 2

4(n− 1)
R(g0)v +

n+ 2
4(n− 1)

Ru4/(n−2)v.

In a special case, where g = g0 and R = n(n− 1), this operator takes the form

(2.3) Lgv = ∆gv + nv.

For convenience we let L denote the linearization; whether it is relative to g0 or
g will be clear from the context. Our interest in this section is in the mapping
properties of L.

When M is compact, L is self-adjoint, and in this case it is said to be non-
degenerate provided 0 /∈ spec (L). This is equivalent to either the injectivity or
surjectivity of L : Hs+2(M) → Hs(M) for any s. Although it is the surjectivity
that is used in the nonlinear analysis, it is usually easier to check injectivity. For
example, it is clear that the sphere Sn with its standard metric is degenerate
because L annihilates the restrictions of linear functions on Rn+1 to Sn.

When M is noncompact, the precise formulation of nondegeneracy is more
subtle since in all the known examples 0 is in the spectrum of L. Rather than
exclude these, we must examine the mapping properties of Lmore closely. Before
stating the correct abstract formulation of nondegeneracy, we present the two
key examples motivating this definition.

Delaunay metrics. The punctured sphere M = Sn\{p1, p2} with its stan-
dard metric has CPSC but is incomplete. However, it is conformal to the com-
plete CPSC product metric g = dt2+dθ2 on Rt×Sn−1

θ . There is a one-parameter
family of complete CPSC metrics gε, 0 < ε ≤ u with u = ((n − 2)/n)(n−2)/4,
conformal to g and with g a constant multiple of gū. For each ε ∈ (0, u] we have
R(gε) = n(n−1) and gε is rotationally invariant with respect to the Sn−1 factor
and periodic in t. Because of their similarity to the CMC surfaces of revolution
discovered by Delaunay [D] these are called Delaunay solutions, although it was
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Fowler [F1], [F2] who first studied the differential equation of which these are
solutions. Here gε = u

4/(n−2)
ε g, and we have normalized so that at t = 0, u′ε = 0

and u′′ε ≥ 0. In general, these metrics also have a translation parameter which is
relevant to the analysis, as will be apparent below. These solutions are discussed
at length in [MPU], to which we refer for details on the discussion below (cf. also
[S2]).

As ε → 0, the supremum of uε is uniformly bounded, but the infimum
tends to zero. Geometrically, the metrics gε develop a sequence of evenly spaced
“necks” which separate almost spherical regions. As ε → 0, these metrics con-
verge to a “string of pearls”—a sequence of round spheres of radius one adjoined
at their poles and arranged along a fixed axis. We will denote (R × Sn−1, gε)
by Dε.

The linearization Lε = ∆ε + n at any gε is self-adjoint. It has periodic
coefficients, hence its spectrum is pure absolutely continuous; there is no point
spectrum, i.e. no eigenfunctions in L2. This last assertion may be seen rather
concretely. Separating variables according to the eigenfunction decomposition of
∆θ, we reduce to analyzing each of the ordinary differential operators Lj induced
on the eigenspaces. When j > 0, i.e. when the eigenfunction ψj(θ) on Sn−1 is
nonconstant, any solution of Ljφ = 0 grows exponentially in one direction or the
other, as may be determined by simple estimates [MPU]. On the other hand, the
two linearly independent solutions of L0φ = 0 are temperate, and so we must
examine them further to ensure that they are not in L2. Fortunately they can be
determined explicitly by differentiating uε with respect to either the translation
parameter t, or the Delaunay parameter ε. Call these φ+

0 and φ−0 , respectively;
then φ+

0 is periodic, hence bounded, while φ−0 grows linearly in t.
It is crucial in what follows that these temperate Jacobi fields are integrable,

i.e. they arise as derivatives of one-parameter families of conformally related
CPSC metrics.

Although Lε does not have closed range on L2, it does have this property
when considered as an operator on certain weighted Sobolev or Hölder spaces.
This was proved for the weighted Sobolev spaces Hs

δ in [MPU], and for the
weighted Hölder spaces in [MPa2]. There are advantages and disadvantages in
using either of these spaces: the Hölder spaces are better suited to the nonlinear-
ity, but for the various duality arguments we use, the Sobolev spaces are more
convenient. Thus, for δ, s ∈ R, define

(2.4) Hs
δ (Dε) = {φ = eδ

√
1+t2 φ̃ : φ̃ ∈ Hs(Dε)},

where Hs is the standard (global) Sobolev space on Dε with respect to gε, and
t is the “cylindrical length” coordinate on R × Sn−1. Note that the geometric
length along Dε depends on ε; for each ε > 0 it is commensurate with t, but not
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uniformly so as ε→ 0. The spaces Hs are algebras provided s > n/2, and so we
shall always make this restriction when needed for the nonlinear aspects of our
problem.

Now

(2.5) Lε : Hs+2
δ (Dε) → Hs

δ (Dε)

is bounded for any s and δ, but when δ = 0 it does not have closed range. In fact,
Lεφ = 0 has a two-dimensional family of temperate solutions (namely the span
of φ+

0 and φ−0 ) and these may be used to construct an orthonormal sequence φ(j)

in H0
0 = L2 (or any Hs

0) with ‖Lεφ
(j)‖ → 0; this is one of the standard criteria

for showing the range is not closed.
We prove in [MPU] that there is a monotone sequence δj →∞, depending on

ε and with δ0 = 0, for which the map (2.5) is Fredholm provided δ /∈ {±δj}. The
values of the δj are exactly those for which the ordinary differential operators Lj

have solutions of Ljφ = 0 growing exactly like e±(δ/Pε)t, where Pε is the period
of the metric gε. (This is demonstrated in Proposition 4.8 of [MPU] under the
assumption that Pε = 1. A simple rescaling leads to this version.) Thus the same
argument as above shows that Lj , and hence Lε, cannot have closed range on
Hs
±δj

. The main content of this result is that Lε has closed range when δ 6= ±δj .
There is no solution of Ljφ = 0 which decays faster than e−|t|δ, for any fixed

δ > 0, as t→ ±∞; for j ≥ 1 this follows from the maximum principle (cf. [MPU]
for the case j = 1 which is somewhat more subtle), while for j = 0 it follows
because we know the solutions explicitly. This implies that (2.5) is injective
provided δ < 0. By duality and elliptic regularity, (2.5) has dense range if δ > 0;
when δ > 0 and δ 6= δj , the range is also closed, hence (2.5) is then surjective.

We have established that Lε is surjective on Hs+2
δ for δ > 0, δ 6= δ1, δ2, . . .

Unfortunately, none of these spaces are suitable for the nonlinear problem: if φ
grows like etδ then (1 + φ)(n+2)/(n−2) grows even faster. It is possible to obtain
surjectivity on a smaller space. Let χ be a cutoff function which equals one for
t ≥ 1 and zero for t ≤ −1, and define the “deficiency subspace” W by

(2.6) W = span {χφ+
0 , χφ

−
0 }.

(2.7) Proposition. The map

Lε : Hs+2
−δ (Dε)⊕W → Hs

−δ(Dε)

is surjective for any δ < δ1.

An analogous result is proved in [MPU] for more general manifolds of CPSC
with k asymptotically Delaunay ends, and with respect to the weighted Sobolev
spaces, but is quite simple to prove for the Dε. Suppose f ∈ Hs+2

−δ (Dε), and let
fj be its eigencomponents with respect to the Laplacian on Sn−1. A solution uj
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of Ljuj = fj may be constructed for each j by “integrating in from −∞” in the
standard ODE variation of parameters formula. These solutions uj will decay
like e−|t|δ as t→ −∞. Since δ < δ1, uj must also decay like e−|t|δ as t→ +∞ for
j ≥ 1, for if it did not, then the difference between this solution and any other
solution vj of Ljvj = fj would be in the nullspace of Lj , hence not in Hs+2

δ .
This argument fails for j = 0, so uj can be written, for t � 0, as a sum of two
terms, one in Hs+2

−δ and one in W .
We still need to check that the nonlinear operator Ngε

maps Hs+2
−δ ⊕W to

Hs
−δ. Clearly Ngε maps Hs+2

−δ to Hs
−δ. To ensure that it also carries W to Hs

−δ

we need to modify the definition of this map slightly. In fact, since elements
(aχφ+

0 , bχφ
−
0 ) ∈ W correspond, for t ≥ 1, to the infinitesimal variations of one-

parameter families of Delaunay metrics, we can define a two-parameter family
of metrics g̃ε,a,b on the cylinder such that for t ≤ −1, g̃ε,a,b = gε and for t ≥ 1,
g̃ε,a,b = gε+dε(b)(t−τε(a)). Here dε : R → (−ε, u−ε) and τε : R → (−Pε/2, Pε/2)
are monotone, smooth, surjective functions such that dε(0) = τε(0) = 0. The
map (a, b) 7→ g̃ε,a,b induced by τε and dε can be regarded as an exponential map
to the space of Delaunay metrics on the half cylinder from the tangent plane at
the point gε. By judicious choices of the functions dε and τε and the definition
of g̃ε,a,b in −1 < t < 1, we can insure that if g̃ε,a,b = ũ

4/(n−2)
ε,a,b gε, then

χφ+
0 = χφ+

0 (ε) =
d

da
ũε,a,b

∣∣∣∣
(a,b)=(0,0)

,

χφ−0 = χφ−0 (ε) =
d

db
ũε,a,b

∣∣∣∣
(a,b)=(0,0)

.

We define a new operator by

N (a,b)
gε

(φ) = ∆
egε,a,b

φ− n− 2
4(n− 1)

R(g̃ε,a,b)(1 + φ)(2.8)

+
n(n− 2)

4
(1 + φ)(n+2)/(n−2)

for φ ∈ Hs+2
−δ and (a, b) ∈ R2. Finally, setting

(2.9) Ngε
(φ, aχφ+

0 , bχφ
−
0 ) ≡ N (a,b)

gε
(φ),

we see that Ngε : Hs+2
−δ ⊕W → Hs

−δ is a well defined real analytic map.

Complete CPSC metrics on X \ Λ. In the last subsection we consid-
ered singular Yamabe metrics on the sphere with two points removed. Rather
different solutions were constructed in [MPa1] and [MS]. These are complete
CPSC metrics on M = X \Λ, where Λ is a finite disjoint union of submanifolds
Λi without boundary, (X, g0) is compact of nonnegative scalar curvature, and
dim Λi = ki with 1 ≤ ki ≤ (n − 2)/2. The upper bound on the dimensions ki
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is, by a theorem of Schoen and Yau [SY], a necessary condition. Note that we
temporarily abandon the convention that g0 is complete on M = X \ Λ here.

The completeness of g = u4/(n−2)g0 on M \ Λ necessitates that u tends to
infinity rather strongly on approach to Λ. A detailed study of this singular
behavior is given in [M1]. Let r denote a smooth function on M which is every-
where positive, and which agrees with the polar distance function (with respect
to g0) on a tubular neighborhood of Λ. The solutions u constructed in [MPa1]
and [MS] are asymptotic, to leading order, to Ar(2−n)/2 as r → 0, with A a
constant depending only on dimension. It is shown in [M1] that in a neigh-
borhood of each component Λi these solutions have more refined asymptotics
u ∼ Ar(2−n)/2(1 +O(rki/2)). For convenience, in the rest of this section assume
that Λ has only one component of dimension k.

The linearized scalar curvature operator relative to one of these CPSC metrics
g has the form (2.3). If k2 ≤ 4(n − 2)(n − 2k − 2) (cf. [MS]), the continuous
spectrum of L contains 0, hence again L does not have closed range on L2.
As before, it is appropriate to let L act on weighted Sobolev or Hölder spaces.
Although both [MPa1] and [MS] use Hölder spaces, we shall use Sobolev spaces
as above. Once again, Hs

δ (M, g) is defined to be the space of functions φ =
r−δ+k/2φ̃, where φ̃ is in the uniform global Sobolev space Hs on M with respect
to the complete metric r−2g0 (or, equivalently, with respect to g). Note the
change of sign and shift of weight parameter relative to the previous definition.
Then it follows from the theory of [M2] that

(2.10) L : Hs+2
δ (M) → Hs

δ (M)

has closed range for all δ /∈ {±δj}, where as before 0 = δ0 < δ1 < . . . → ∞.
Unlike the situation for the Delaunay metrics, (2.10) will not be Fredholm, even
when it has closed range. Indeed, for δ < 0 it has infinite-dimensional kernel, but
at most finite-dimensional cokernel, while for δ > 0 it has infinite-dimensional
cokernel and at most finite-dimensional kernel.

The CPSC metrics constructed in [MS] and [MPa1] are nondegenerate in
the sense that (2.10) is surjective if 0 = δ0 < δ < δ1 (and hence for all δ > 0,
δ 6= δj). As shown in [MS], this implies that every sufficiently small element
of the nullspace of L in Hs+2

δ for 0 < δ < δ1 is integrable, i.e. is the tangent
vector of a one-parameter family of solutions ut. Notice that because of the shift
in the weight parameter here, the space on which L is surjective contains only
decaying functions, so unlike before we do not need to separate off the nullspace
(or deficiency subspace) as in (2.7) to obtain a space on which the nonlinear
operator Ng acts.

CPSC metrics on manifolds with boundary. Our construction also
applies to CPSC manifolds with boundary, either compact or noncompact. The
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issue here is the mapping properties of L on Sobolev or Hölder spaces with
Dirichlet boundary values. A geometrically natural boundary condition for the
nonlinear problem is to require the boundary in the induced metric to have
constant mean curvature. This has been studied extensively by Escobar [E] and
others. Two key examples are the spherical cap Sn

r of radius r and the Delaunay
metrics on the half cylinder, Dα

ε , which are simply the restrictions of the Dε to
t ≥ α. The mean curvature of the boundary is a constant depending on r and α;
when r = π/2, α = 0 the boundaries are not only minimal but totally geodesic.

The half-Delaunay metrics are all nondegenerate, as defined below. This
follows from simple modifications of the previous discussion of the full Delaunay
metrics. On the other hand, the spherical cap Sn

r is nondegenerate only when
r 6= π/2. When r = π/2, L has a one-dimensional nullspace consisting of the
linear functions vanishing on the boundary, hence by duality is not surjective.

Nondegeneracy. Having described in some detail the main examples of
CPSC manifolds for which the Jacobi operators L are in some sense surjective, we
now abstract these properties and formulate a general notion of nondegeneracy
sufficiently flexible for the gluing construction.

Suppose (M, g) is a noncompact, complete Riemannian manifold of CPSC.
The standard Sobolev spaces Hs are defined relative to the Riemannian measure
and connection. We shall assume that there exists a weight function 0 < α ∈
C∞(M) the powers of which define a scale of weighted L2 and Sobolev spaces.
Thus we define

(2.11) Hs
δ (M) = {v = αδ ṽ : ṽ ∈ Hs(M)}.

The dual of Hs
δ is naturally identified with H−s

−δ .
The main nondegeneracy hypothesis is that there exists a weight parameter

δ > 0 such that for all s ∈ R there exists a constant C = Cs > 0 for which

(2.12) ‖φ‖s+2,−δ ≤ C‖Lφ‖s,−δ

for every φ ∈ C∞0 (M). This implies that

(2.13) L : Hs+2
−δ → Hs

−δ

is injective and has closed range. It also gives some analytic control on the
behavior of L on the ends of M . By duality we see that

(2.14) L : Hs+2
δ → Hs

δ

is surjective. (It is precisely this last assertion which, though still true, would be
a bit more difficult to obtain if we were using Hölder spaces.)
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In some cases, such as for the problem on M \ Λ where all components of Λ
are of positive dimension, this is the only hypothesis needed because, for some
neighborhood of zero U ⊂ Hs+2

δ , and for δ > 0 sufficiently small,

(2.15) Ng : U → Hs
δ

is well defined and has surjective linearization. In other cases, such as for the
Delaunay metrics, Ng does not map elements of Hs+2

δ to Hs
δ and so we need to

find another space on which the linearization is surjective and on which Ng is
well-behaved. Thus we assume the existence of a “deficiency space” W ⊂ Hs+2

δ ,
composed of elements of the form χφ, for some fixed cutoff function χ, where
φ ∈ Hs+2

δ and Lφ = 0 outside some compact set, such that

(2.16) L : Hs+2
−δ ⊕W → Hs

−δ

is surjective. There is no loss of generality in assuming that (2.16) is an iso-
morphism, because we can always restrict to the orthogonal complement of the
intersection of the nullspace of L on Hs+2

δ with Hs+2
−δ ⊕W , no element of which

is contained in Hs+2
−δ by hypothesis. We also require that the elements of W

are “asymptotically integrable,” which we take to mean that elements of W are
derivatives of one-parameter families of exact solutions of Ng outside a compact
set. The validity of this condition was discussed in detail for the Delaunay met-
rics. Rather than formulate the asymptotic integrability more specifically, we
refer to these examples and single out as the second nondegeneracy hypothesis
the only consequence that we require, namely that

(2.17) Ng : U → Hs
−δ

is surjective onto a neighborhood of 0 with surjective linearization (2.16), where
U is a neighborhood of the origin in Hs+2

−δ ⊕W .
It turns out that this second condition is rather less general than it might

appear. In fact, it is not hard to show that (2.16) implies that W must be
finite-dimensional. For if it were not, then one could construct an orthonormal
sequence {χφj} ⊂ W , of fixed Hs+2

δ norm one, which decays to zero uniformly
on any compact set. This would contradict the closedness of the range of (2.16).

We say that a metric g is nondegenerate if the linearization at 1 of the
nonlinear operator Ng for g is nondegenerate, in the sense that (2.12) and either
(2.15) or (2.16)–(2.17) hold. Note that in the two main examples indicated above
nondegeneracy holds provided that L has no kernel in L2. The analytic control
at infinity which improves this to (2.12) and (2.16) is provided by the strong
asymptotics which these solutions exhibit (cf. [MPU], [M1] and [M2]).
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III. The gluing construction

Our aim in this section is to state and prove the gluing theorems for mani-
folds with nondegenerate CPSC metrics. Thus let (M1, g1) and (M2, g2) be two
complete CPSC manifolds (possibly with boundary). In the next subsection we
will construct a one-parameter family of approximate solution metrics gε on the
connected sum M1 #ε M2, where the parameter ε corresponds to the size of the
connecting neck and is assumed to be small. The approximate solution metric
gε has CPSC except on a neighborhood of this neck.

(3.1) Theorem. Suppose that (M1, g1) and (M2, g2) are two nondegenerate
CPSC manifolds. Then for some ε0 > 0 and all 0 < ε < ε0, there exists a func-
tion u ∈ Hs+2

−δ (M1 #ε M2, gε) such that gε = (1 + u)4/(n−2)gε is nondegenerate
with CPSC.

In the next section we will make more refined statements about the global
geometry of these new metrics and the implications of this construction for the
moduli spaces.

In the rest of this section we shall prove Theorem (3.1). The proof has several
steps. We first construct the approximate solution metrics gε. In the next two
steps, which are the heart of the proof, we show that the gε are nondegenerate and
that (right) inverses for the linearized scalar curvature operators are uniformly
bounded as ε → 0. The rather simple indirect method used here is the main
novel ingredient in this paper. Finally, using this nondegeneracy, we perturb gε

to an exact solution using a standard iteration argument.

Approximate solutions. Let (Mi, gi), i = 1, 2, be two nondegenerate com-
plete CPSC manifolds. Fix points pi ∈Mi and small metric balls B2αi

(pi). Let
(ri, θi) be Riemannian polar coordinates about pi. Then for each ε ∈ (0, 1)
identify the annulus Bα1(p1) \Bεα1(p1) with Bα2(p2) \Bεα2(p2) by the relation
(r1, θ1) ∼ (r2, θ2) if θ1 = θ2 and r1r2 = εα1α2. This is the connected sum
Mε ≡ M1 #ε M2; the points pi and radii αi are suppressed in this notation,
although both metrically and conformally this data is important.

We first consider the case where the metrics gi are conformally flat in the
balls B2αi

(pi). In this case the analysis is the most transparent. It is useful
to rephrase the problem relative to new, conformally equivalent, background
metrics gi,c on Mi \ {pi}. Geometrically we deform the conformally flat metrics
gi in Bαi

(pi) to half-infinite cylinders. The connected sum Mε is then given
by identifying these cylinders at a certain distance. The metric degeneration of
Mε as ε→ 0 now corresponds to the lengthening of this cylindrical tube. More
specifically, by (temporary) hypothesis, gi = v

4/(n−2)
i δ in B2αi

(pi), where δ is
the standard Euclidean metric. We set gi,c = u

−4/(n−2)
i gi, where
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ui = %i + (1− %i)((n− 2)/n)(2−n)/4r(n−2)/2vi,

for some smooth cutoff function %i ≥ 0 with %i = 1 on Mi \B2αi(pi) and %i = 0
in Bαi

(pi). Then in Bαi
(pi) \ {pi}, gi,c is isometric to the cylindrical metric

n−2
n (dt2i + dθ2i ). The normalizing constant is chosen so that this cylinder has

scalar curvature R = n(n− 1).
In this smaller ball replace the variable ri by ti = − log ri, and let T =

T (ε) = − log ε. Then the identification between the two annular regions is given
by (t1, θ1) ∼ (t2, θ2) if θ1 = θ2 and t1 + t2 = A1 + A2 + T , where Ai = − logαi

and Ai ≤ ti ≤ Ai + T . We now alternately denote the connected sum Mε by
MT . Because we have assumed that the gi are conformally flat on B2ai

(pi), this
identification map is an isometry with respect to the metrics gi,c, hence there is
a naturally induced metric gc,T on MT . We let CT denote the cylindrical region
where Ai ≤ ti ≤ Ai + T .

The approximate solution metric gT on MT is defined in terms of the con-
formal factor

uT = χ1u1 + χ2u2,

using nonnegative cutoff functions {χ1, χ2} on CT , where χi ≡ 1 for ti ≤ Ai +
T/2 − 1 and χi = 0 for ti ≥ Ai + T/2 + 1 (here we regard χi as a function on
Mi). Then uT extends naturally to all of MT , and we define the approximate
solution metric by

(3.2) gT = u
4/(n−2)
T gc,T .

Note that gT = gi on Mi \Bc(ε)αi
(pi), where c(ε) = c

√
ε.

If the metrics gi are not conformally flat in the balls B2αi(pi), the construc-
tion of gT is almost identical, but is no longer conformally natural, i.e. the con-
formal class of gT depends on choices of cutoff functions as well as T . In B2αi

(pi)
we can choose a normal coordinate system in terms of which gi = δ + hi, where
hi is small in some fixed norm. In B2αi

(pi) \ Bαi
(pi) we deform hi to zero and

simultaneously deform δ to ((n − 2)/n)r−2δ. These metrics may now be joined
as before.

We define the unweighted Sobolev spaces Hs with respect to the metrics
gc,T ; of course, the norms on these spaces depend on T , although this effect may
be localized to CT . We may assume that the weight functions αi on Mi are
identically one in a large neighborhood of the points pi; these extend naturally
over CT and we may define a new weight function α on MT . Using it, we define
the weighted Sobolev spaces Hs

δ on the connected sum.
The metric gT does not have CPSC, and we can easily estimate the error

term

(3.3) fT = ∆gc,T
uT −

n− 2
4(n− 2)

R(gc,T )uT +
n(n− 2)

4
u

(n+2)/(n−2)
T .
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In fact, (in the conformally flat case) gT does have scalar curvature n(n − 1)
except in the middle of CT , where ti ∈ [Ai + T/2 − 1, Ai + T/2 + 1]. Since
ui = O(r(n−2)/2

i ) and ri = e−ti , it is clear that

‖fT ‖s ≤ Ce−T/2

for any s. We do not need to use a weighted norm here because fT is supported
on CT where α = 1. In the non-conformally flat case, there is an additional error
term incurred by cutting off hi. By choosing the normal coordinates correctly, we
can also bound this extra error term, which is now supported near the boundary
of CT , by Ce−T/2.

Nondegeneracy of the approximate solution. In order to be able to
perturb gT to a CPSC metric, we need to establish nondegeneracy of the lin-
earization of the scalar curvature operator for gc,T at uT . Although the def-
initions (2.12) and (2.15)–(2.17) of nondegeneracy were given only for CPSC
metrics, these hypotheses make perfect sense here.

(3.4) Proposition. There exists a T0 > 0 such that for all T ≥ T0, the
metric gT of (3.2) is nondegenerate.

Before embarking on the proof, we make some preliminary observations about
the linearizations of the scalar curvature operator on M1, M2 and MT . For any
metric g, the conformal Laplacian

Lg = ∆g −
n− 2

4(n− 1)
R(g0)

is the linear part of Ng in (2.1). It is conformally equivariant in the sense that
if g′ = u4/(n−2)g, then for any φ ∈ C∞,

(3.5) Lg(uφ) = u(n+2)/(n−2)Lg′φ.

A special case of this equality is when φ = 1, in which case (3.5) reduces to (2.1).
Next, suppose g′ = u4/(n−2)g, and let Lg be the linearization of Ng at u.

The relationship between Lg and Lg′ is not as simple as (3.5) in general, but
it is when both g and g′ have the same (constant) scalar curvature. Indeed,
if R(g) = R(g′) = n(n − 1), then L = ∆ − n(n− 2)/4 for g or g′. Since
Lg = Lg + (n(n+ 2)/4)u4/(n−2), we have

Lg(uφ) = Lg(uφ) +
n(n+ 2)

4
u4/(n−2)(uφ)(3.6)

= u(n+2)/(n−2)

(
Lg′φ+

n(n+ 2)
4

φ

)
= u(n+2)/(n−2)Lg′φ.

In particular, away from the transition regions B2αi(pi) \ Bαi(pi), (3.6) applies
to either of the two pairs of metrics gi, gi,c, with u = ui. The linearizations
corresponding to these two metrics will be denoted by Li and Li,c.
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(3.7) Lemma. Suppose Li,cφ = 0 for some function φ on Mi \ {pi}, and
suppose that φ is bounded on the deleted neighborhood Bαi(pi) \ {pi}. Then
u−1

i φ extends smoothly across pi on Mi, and in particular, |φ| ≤ Ce−(n−2)ti/2 =
Cr

(n−2)/2
i on this neighborhood.

Proof. By (3.6),

u
(n+2)/(n−2)
i Li(u−1

i φ) = Li,cφ = 0,

and so, letting ψ = u−1
i φ, we see that Liψ = 0 on Bαi(pi) \ {pi}. Since φ is

bounded, |ψ| ≤ Cr(2−n)/2. Thus ψ extends to a weak solution of Liψ = 0 on
all of Mi, and by a standard removable singularities theorem, extends smoothly
across pi. �

One other result is needed. Let LT denote the linearization of Ngc,T
at uT .

(3.8) Lemma. Suppose that φ solves LTφ = 0 on the cylindrical region CT ,
and furthermore suppose that ‖φ‖L2(A) ≤ 1, where A is the union of two annular
neighborhoods, one about each of the boundary components of CT . Then |φ| ≤ C

on all of CT , where C is independent of T .

Proof. Since gc,T is a product metric in CT ,

LT =
n

n− 2

(
∂2

∂t2
+ ∆θ

)
− n(n− 2)

4
+
n(n+ 2)

4
u

(n+2)/(n−2)
T

there. Provided we adjust the annular region appropriately, we can ensure that
the term of order zero in this operator is strictly negative. The result then follows
from the maximum principle, and in fact we can take C = 1. �

It is not strictly necessary that the term of order zero is negative on the
whole cylinder; it is only necessary that it is nonnegative on a compact set not
growing in size as T gets large. We leave details to the reader.

Proof of Proposition (3.4). We first show that the linearization LT

of Ngc,T
at uT is injective on Hs+2

−δ for any s, and we argue by contradiction.
Suppose that there exists a sequence Tj → ∞ and a function φj ∈ Hs+2

−δ (MTj )
such that LTj

φj = 0. The weight −δ of course refers to growth behavior on
any other ends of M1 and M2. Choose compact neighborhoods Ki ⊂ Mi \ {pi}
containing ∂Bαi(pi) and normalize φj so that

max
i=1,2

{‖φj‖Hs+2(K1), ‖φj‖Hs+2(K2)} = 1.

In particular, on one or the other of these sets, φj has Sobolev norm uniformly
bounded below; by passing to a subsequence we can assume that this takes place
on K1. Since we can assume that s > n/2, by elliptic regularity, we also get
uniform supremum bounds for φj on K1 and K2.
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We can now take the limit as j →∞ to obtain a limit φ, which is a function
on the disjoint union M1 \ {p1} tM2 \ {p2}. By the uniform lower bound, φ is
nontrivial on K1 and solves L1,cφ = 0 there. Using Lemma (3.8) we see that φ
is bounded along the cylindrical end of M1 \ {p1}, hence, by Lemma (3.7), the
function ψ = u−1

1 φ extends smoothly to all of M1 and satisfies L1ψ = 0. It is
also the case that ψ ∈ Hs+2

−δ (M1). To see this let χ be a cutoff function equaling
1 outside B2α1(p1), vanishing near p1, and with the support of ∇χ in K1. Then

LT (χφj) = L1,c(χφj) = (∆χ)φj + 2∇χ · ∇φj .

The right hand side is compactly supported and uniformly bounded in Hs
−δ(M1).

By (2.12) we obtain a uniform bound for χφj in Hs+2
−δ , and since u1 = 1 outside

B2α1(p1) it is easy to see that ψ ∈ Hs+2
−δ (M1), as claimed. This is a contradiction,

since ψ is nontrivial and L1 satisfies (2.12). This proves the injectivity of LT for
T sufficiently large. Now we may patch together the estimates (2.12) from M1

and M2 to obtain, for each T ,

‖φ‖s+2,−δ ≤ C(‖LTφ‖s,−δ + ‖φ‖0,K),

where the final term is the L2 norm of φ on a fixed compact set K. Finally, it is
standard that the injectivity of LT shows that this final term must be bounded
by a fixed constant multiple (possibly depending on T ) of ‖LTφ‖s+2,−δ, so we
have shown that (MT , gT ) satisfies (2.12) for T sufficiently large.

If we are in a case where (2.15) holds, then we have proved that gT is nonde-
generate already. Thus suppose that either M1 or M2, or both, have deficiency
spaces W1 and W2 satisfying (2.16). Let W = W1 ⊕W2. We must show that
LT satisfies (2.16) for T sufficiently large. For clarity, we denote the restricted
(or extended, depending on your viewpoint) map in (2.16) by L̃T . We shall
verify that L̃T is surjective by computing its adjoint L̃∗T and showing that it has
no nullspace. Note that L̃T obviously has closed range because it is a finite-
dimensional extension of an operator with closed range.

We formulate this somewhat more generally in the

(3.9) Lemma. Assuming the general setup of §2 above, the map L in (2.16)
is surjective if and only if for every φ ∈ B ≡ ker(L) ∩Hs

δ , the linear functional
on W defined by

(3.10)
∫

(Lw)φ

for w ∈W is not identically zero.

Proof. The surjectivity of the operator in (2.16), which we denote by L̃

temporarily, is equivalent to the injectivity of its adjoint L̃∗. We first compute
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this adjoint. If (v, w) ∈ Hs+2
−δ ⊕W and f ∈ Hs

−δ, then L̃∗ is defined by∫
L̃(v + w)fα2δ =

∫
v(α−2δLα2δf)α2δ +

∫
L(w)(α2δf).

Note that we cannot integrate the second term by parts because w does not decay,
even though Lw is compactly supported. Now multiplication by α2δ defines the
natural isomorphism between Hs

−δ and Hs
δ ; since L is self-adjoint when δ = 0

we see that α−2δLα2δ is canonically identified with L on Hs
δ .

Now if f is in the nullspace of L̃∗, then setting w = 0 and letting v range
over all of Hs+2

−δ we see that α−2δLα2δf = 0. Equivalently, φ = α2δf is in
the nullspace of L in Hs

δ . Now letting v = 0 we see that φ is orthogonal (in
unweighted L2) to Lw for every w ∈W .

On the other hand, if φ ∈ Hs
δ with Lφ = 0 and

∫
(Lw)φ = 0 for every w ∈W

then f = α−2δφ is in the nullspace of L̃∗. �

We return to the proof of Proposition (3.4). We need to show that L̃∗T is
injective for T sufficiently large. As usual, assume not, so that there exists a
sequence Tj tending to infinity and corresponding elements φj in the nullspace
B such that

∫
φjLTw = 0 for all w ∈W . (Note that the space W is independent

of T because its elements are supported away from CT .) Normalize the sequence
as before, so that its norm on one of the two compact sets Ki ⊂ Mi is one.
By the finite-dimensionality of W the restriction (of a subsequence) of the φj

converges on M1 \ {p1}, say, to a nontrivial element φ. As before, ψ = u−1
1 φ

extends smoothly to all of M1 and solves L1ψ = 0. This is a contradiction since∫
ψL1w1 = 0 for all w1 ∈W1 implies by Lemma (3.9) and the surjectivity of L1

in (2.16) on M1 that ψ = 0. �

Uniform surjectivity of LT . By Proposition (3.4) and duality, LT is sur-
jective on Hs

δ (MT ) for all T ≥ T0. This means that there exists some right
inverse

(3.11) GT : Hs
δ (MT ) → Hs+2

δ (MT ).

Because LT is not injective on Hs+2
δ , there are many choices for the map (3.11).

The canonical choice is the one which has range agreeing with the range of
the adjoint map L∗T . Henceforth we assume that the map (3.11) satisfies this
condition.

To understand this choice better, note that by what we have proved, LTL
∗
T is

an isomorphism, hence has a unique inverse GT . Since LTL
∗
TGT = I, we see that

GT must be L∗TGT because both are right inverses of LT with range contained
in the range of L∗T . We also note that by the same formalism as discussed in
the last subsection using the weight function α, we may identify this adjoint L∗T
with α2δLTα

−2δ.
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Now we may restrict GT to Hs
−δ. Unfortunately, its range may not coincide

with Hs+2
−δ ⊕W . Thus for a given f ∈ Hs

−δ we have found two possibly distinct
solutions of Lu = f , namely the solution v + w ∈ Hs+2

−δ ⊕W and GT f . The
difference between these solutions is an element φ ∈ B, the nullspace of LT in
Hs+2

δ . Our ultimate goal is to show that ‖v + w‖ is bounded by a multiple of
‖f‖, uniformly in T . We do this in two steps, first showing that the norm of GT ,
and then the correction term φ, are uniformly bounded.

(3.12) Proposition. The norm of the map GT in (3.11) is uniformly boun-
ded as T →∞.

Proof. The proof, once again, is indirect. Thus we assume that the result
is false, so that for some sequence Tj → ∞ there are functions fj ∈ Hs

δ with
‖fj‖s,δ → 0 such that ‖GTj

fj‖s+2,δ = 1. Since each GTj
fj = ψj is in the range

of L∗Tj
, there exist functions vj ∈ Hs+4

δ with L∗Tj
vj = ψj . Because ‖ψj‖ = 1 and

because of the boundedness of the L∗Tj
on Sobolev spaces, we know that

‖vj‖s+4,δ ≥ C.

Our goal is to show that some subsequence of the vj converges to a function
v ∈ Hs+4

δ which is nontrivial on at least one of M1 or M2. Suppose for definite-
ness that v 6= 0 on M1. Because of the boundedness of L∗Tj

on these Sobolev
spaces, we can also assume that ψj converges to ψ ∈ Hs+2

δ , where L∗1,cv = ψ;
also ‖fj‖s,δ → 0, so that L1,cψ = 0 and hence L1,cL

∗
1,cv = 0. Using Lemma

(3.7) in the same way as before we see that u−1
1 ψ ≡ φ is smooth on M1, so that

|ψ| ≤ Ce(2−n)t/2 on the cylindrical end of M1. This allows us to integrate by
parts to conclude that

0 = 〈v, L1,cL
∗
1,cv〉 = 〈ψ,ψ〉

and so ψ = 0. But now L∗1,cv = 0, or equivalently, L∗1(u
−1
1 v) = 0. But u−1

1 v ∈
Hs+4

δ (M1) and we have already established that L∗1 is injective on this space (or
rather, we established that L1 is injective on Hs+4

−δ , which is the same). This is a
contradiction, hence the vj cannot converge as claimed, and the maps GT must
be uniformly bounded.

To finish the proof we must show that the vj converge in Hs+4
δ . First we

transform the problem so that we may work in Hs
−δ and so avail ourselves of

the estimate (2.12). Let ṽj = α−2δvj ∈ Hs+4
−δ , and define ψ̃j similarly. Then

LTj
ṽj = ψ̃j . Let χ be a smooth, nonnegative cutoff function on either M1 or

M2 which equals one outside B2αi(pi) and zero inside Bαi(pi). By computing
LTj

(χṽj) we see that

‖χṽj‖s+4,−δ ≤ C(‖χψ̃j‖s+2,−δ + ‖ṽj‖s+3,K),
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where K is some compact set containing the support of ∇χ and ‖ · ‖s,K is the
Sobolev Hs norm on K.

We now show that ‖ṽj‖s+3,K is bounded away from zero and infinity as
j →∞. The upper bound will imply, by (2.12), that ‖ṽj‖s+4,−δ ≤ C. The lower
bound will imply that ṽj does not converge to zero on K. This will show that ṽj ,
hence also vj , must converge to a nonzero function, which we know from above
cannot happen.

There are two cases. Suppose first that ‖ṽj‖s+3,K → ∞. Rescale ṽj and
ψ̃j by the factor ‖ṽj‖−1

s+3,K to obtain functions vj , ψj with LTj
vj = ψj , and

‖vj‖s+3,K = 1, ‖ψj‖s+2,−δ → 0. Since vj has fixed norm on a fixed compact
set, ‖χvj‖s+4,−δ ≤ C by (2.12), so we may pass to a limit and obtain a function
v ∈ Hs+4

−δ with Lj,cv = 0 for j = 1, 2. Furthermore, the restriction of v to at
least one of the Mi, say M1, is nonzero. The boundedness of vj on K, which
contains a neighborhood of the boundary of CTj

, implies by Lemma (3.8) that
vj , hence v too, are uniformly bounded on CTj . As before, this shows that
w = u−1

1 v ∈ Hs+4
−δ (M1). But L1w = 0, which is a contradiction since w 6= 0.

The other case is that ‖ṽj‖s+3,K → 0. Use the same cutoff function χ as
above (say on M1) to compute that

(3.13) LTj
L∗Tj

(χvj) = χfj + [LTj
L∗Tj

, χ]vj ≡ hj .

By hypothesis, both terms on the right tend to zero in Hs
δ . But LTj = L1 on

the support of χ, and if the vj are not convergent in Hs+4
δ , then from (3.12) we

see that L1L
∗
1 has closed range. But this is a contradiction, since L∗1 has closed

range and, for any operator A, AA∗ has closed range if and only if A does.
This completes the proof of Proposition (3.12). �

The second part of the uniform surjectivity is the

(3.14) Proposition. Suppose that f ∈ Hs
−δ and let v + w be the (unique)

solution of LT (v + w) = f in Hs+2
−δ ⊕W . Then the function φ in the nullspace

of LT in Hs+2
δ defined by φ = (v + w)−GT f satisfies ‖φ‖ ≤ C‖f‖s,−δ.

We have not specified in which space the norm of φ is to be taken. However,
since B is finite-dimensional, all choices are equivalent. To be definite, we take
it as the L2 norm over a compact set K = K1 ∪K2 where Ki ⊂Mi \Bαi(pi).

Proof. Again suppose not, so that for some sequence Tj tending to infinity
there is an element fj ∈ Hs

−δ with ‖fj‖s,−δ → 0 such that the corresponding φj

satisfies ‖φj‖ = 1. Then we may take a limit and get a nontrivial function φ

on M1 \ {p1} which is bounded on the cylindrical end and satisfies L1,cφ = 0.
Then, as before, ψ = u−1

1 φ is smooth across p1 and solves L1ψ = 0. But since
φj = vj +wj −GTj

fj and ‖fj‖ tends to zero, we see that ψ ∈ Hs+2
−δ ⊕W1, which

is a contradiction since we assumed that L1 has no nullspace here. �
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Proof of Theorem (3.1). It is now a relatively simple matter to complete
the proof of the gluing theorem. In fact, using either (2.15) or (2.17) as appro-
priate, the nonlinear step is trivial. Recall that we wish to find a small function
v ∈ Hs+2

δ or pair v = (ṽ, w) near zero in Hs+2
−δ ⊕W such that

(3.15) Ngc,T
(uT + v) = 0.

We shall suppose that we are in the case where (2.17) applies, to be definite.
If the w component were trivial, this would be equivalent to requiring that
(1 + ṽ)4/(n−2)gT have CPSC, but in general w cannot be treated as a simple
conformal factor (cf. (2.9)). In general, (3.15) is equivalent to the condition that
(1 + ṽ)4/(n−2)gw

T has CPSC n(n − 1), where gw
T is defined in analogous fashion

to g̃ε,a,b in §2.
Denote the left side of (3.15) by N(v). Expanding in a Taylor series shows

that
N(v) = fT + LT v +QT (v),

where fT is the error term (3.3), LT is the linearization of N at uT , hence acts by
LT (v) = LT (ṽ+w), and QT is a quadratically small remainder term in v, which
depends uniformly on uT , hence on T . The inverse G̃T of L̃T is an isomorphism
from Hs

−δ to Hs+2
−δ ⊕W , and so we can rewrite (3.15) now as

(3.16) v = −GT (fT +QT (v)), v ∈ V.

It is now standard to solve (3.16), for example by showing that the map

η → T (η) = −GT (fT +QT (η))

is a contraction on a ball of radius σ about 0 in Hs+2
−δ ⊕W , hence has a unique

fixed point. In fact, by taking T large enough we have ‖fT ‖ ≤ Ce−T/2 ≤ σ/(2A)
and ‖QT (η)‖ ≤ Cσ2 ≤ σ/(2A) for ‖η‖ ≤ σ, where A is a uniform bound for the
norm of GT . Thus T maps the ball of radius σ into itself. Furthermore,

‖T (η1)− T (η2)‖ ≤ A‖QT (η1)−QT (η2)‖ ≤ 2Aσ‖η1 − η2‖,

hence if σ < 1/(4A), T is a contraction mapping and there is a unique v ∈ V

satisfying (3.16) and (3.15).
The only remaining fact to check is that the solution metric g obtained here

is nondegenerate. By the locality of W , (2.16) and (2.17) are immediate. (2.12)
can be proved by contradiction. It suffices to prove that the linearization of N at
g is injective on Hs

−δ provided T is sufficiently large. The proof of this is identical
to that of Proposition (3.5). This completes the proof of Theorem (3.1). �

We remark that the solution v of (3.15) and (3.16) is unique in Hs+2
−δ ⊕W ,

but it is not the unique solution near zero in Hs+2
δ . In fact, since we are working
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orthogonal to B∩ (Hs+2
−δ ⊕W ), where B ≡ ker(L)∩Hs

δ , we see that the solutions
in Hs+2

δ are parametrized, as in [MPU], by the elements of B.

IV. Dipole metrics and applications to the moduli spaces

In this section we wish to discuss the ramifications of Theorem (3.1) in the
special case where the component manifolds (Mi, gi) are conformally cylinders
with Delaunay metrics. As established in §2, these solutions are nondegenerate,
and the deficiency subspace W may be localized to one end of each cylinder.
Furthermore, it is clear that this gluing procedure can be iterated, because the
glued solutions are again nondegenerate. This leads us to

(4.1) Theorem. Let (Mi, gεi
), i = 1, 2, . . . , be any sequence of Delaunay

manifolds. Choose points p+
i , p

−
i and sufficiently small balls Bα±i

(p±i ) on each
Mi. Then for each N ≥ 2, and for gluing parameters ηj sufficiently small, there
is a nondegenerate metric g(N)(η) with CPSC on the iterated connected sum

M (N)(η) ≡M1 #η1 M2 #η2 . . .#ηN−1 MN ,

obtained by gluing the neighborhood Bα+
i
(p+

i ) to Bα−i+1
(p−i+1), which is near to

the connected sum metric. This metric may be obtained inductively, by gluing
(MN , gεN

) to (M (N−1)(η′), g(N−1)(η′)), where η′ = (η1, . . . , ηN−1). Further-
more, if the sequence {ηj} tends to zero rapidly enough, then the Riemannian
manifolds (M (N)(η), g(N)(η)) converge on compact sets to a manifold M with
infinitely generated homology group Hn−1, and a Riemannian metric g on M of
CPSC.

Proof. The only statement that needs proving is the convergence as N →
∞. By the Harnack inequality, it suffices to show that in this iterative process,
the norm of the conformal factor does not blow up or degenerate on some fixed
compact set K ⊂ M1. But in the gluing procedure we have shown that we
can make the conformal factor as small as desired on the set K by choosing
T sufficiently large. Thus, when gluing MN onto the previously constructed
connected sum, we choose TN so that the conformal factor on K is no larger
than 2−N−2. The net change of all the conformal factors is then no larger than
1/2, hence the procedure converges. �

In [MPU] we studied the moduli space MΛ of all CPSC metrics g on the
complement of a fixed singular set Λ in Sn. The basic result is that MΛ is a real
analytic set. As such, it is endowed with a real analytic stratification into smooth
analytic varieties, but without further information it is impossible to control the
dimensions of these strata or of the whole moduli space. In particular, it is
conceivable thatMΛ could be a single point. However, if one can prove that some
g ∈ MΛ is nondegenerate, then a neighborhood of any nondegenerate solution
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g is a real analytic manifold of dimension #Λ. This shows that the connected
component of MΛ containing g is of this dimension, and this nondegenerate
solution is in the principal stratum. Unfortunately, it was not at all clear that any
of those solutions previously known to exist, i.e. those constructed by Schoen,
are nondegenerate. The original motivation for this paper was to construct
nondegenerate solutions, at least for certain singular sets Λ, and this has now
been accomplished. Thus we have proved

(4.2) Corollary. Let (M (N), g(N)) be one of the solutions obtained in The-
orem (4.1) by gluing together N cylinders with their Delaunay metrics. This
manifold is conformally flat and may be uniformized as a domain in the sphere
Ω = Sn \ Λ, for some set Λ with 2N elements. The resulting conformally flat
metric g = g(N) is a nondegenerate element of the moduli space MΛ. The com-
ponent of MΛ containing g is a 2N -dimensional real analytic set and g is in
the principal, top-dimensional, stratum.

The singular sets Λ we obtain by this gluing procedure are very special:
they contain N pairs of closely spaced points, with the distance between each
pair bounded from below. We call these dipole configurations. In the next
subsection we indicate how we may use the nondegeneracy of dipole metrics to
deduce nondegeneracy of elements in other moduli spaces MΛ, where Λ is not
necessarily a dipole configuration.

We end this subsection by observing that by the construction we can prescribe
the geometry of half of the ends of a dipole solution. This follows immediately
by observing that the elements in the parameter space W are supported on only
half (i.e. {(tj , θj) : tj > −1}) of each cylinder.

(4.3) Corollary. Let g be a dipole metric constructed by gluing together
the N Delaunay solutions Dε1 , . . . , DεN

. Let the singular set Λ ⊂ Sn be writ-
ten as a set of pairs {(x1, y1), . . . , (xN , yN )}. Then the asymptotic Delaunay
parameter for g at xj is exactly εj and the Delaunay parameter at yj is very
close to εj. In particular, since we can prescribe the Delaunay parameters at
xj, by choosing εj = u for j = 1, . . . , N , there exist dipole solutions with N

asymptotically cylindrical ends.

This shows that the dipole solutions are geometrically very different than
the solutions constructed by Schoen, where the Delaunay parameters at each
singular point are very close to zero.

The unmarked moduli space Mk. As a final topic, and to further elu-
cidate the impact of the dipole solutions on the moduli space theory, we shall
consider the unmarked moduli space

Mk = {(g,Λ) : Λ ∈ Ck and g ∈MΛ}
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of conformally flat CPSC metrics on the complement of any k points in the
sphere. Here Ck is the configuration space of k distinct points in Sn and MΛ

is the moduli space of solutions on Sn \ Λ studied in [MPU]. There is a natural
map

π : Mk → Ck.

In this subsection we prove that Mk is a real analytic set. We will only sketch
the proof since it is very close to the proof of the analogous result in [KMP]; note
that we use this rather than the proof in [MPU] because it is much more direct
and simple to modify. A consequence of this result is that Mk admits a strat-
ification into smooth real analytic manifolds. The dimensions of these strata,
particularly the maximal dimension, are difficult to obtain without more infor-
mation. However, there is a nondegeneracy condition which is less stringent than
the one we have used before, such that if (g,Λ) ∈ Mk is nondegenerate in this
new sense, then the stratum containing this point is maximal (in that connected
component of Mk) and has the expected dimension k(n + 1). We call this new
nondegeneracy condition unmarked nondegeneracy , and the former one simply
nondegeneracy, as before. We shall see that nondegenerate points in MΛ are a
fortiori nondegenerate in the unmarked moduli space Mk. In particular, since
the dipole metrics are nondegenerate in MΛ, any component of Mk, k = 2N ,
containing a dipole metric has top stratum of the predicted dimension. Further-
more, all other points in this top-dimensional stratum, including ones where the
singular points are no longer in the dipole configurations, are then nondegener-
ate in Mk. We shall show, finally, that most of these are nondegenerate in their
respective moduli spaces MΛ.

Before we can give the precise statements and proofs, we digress briefly to
discuss some additional facts about Jacobi fields for Delaunay metrics which we
need. We also quote several results and the (adaptations of the) relevant lemmas
from [MPU] which are required.

We have already used the two temperate Jacobi fields φ±0 on Dε, one periodic
and the other linearly growing, which correspond to infinitesimal translations and
changes of Delaunay parameter. There is another set of Jacobi fields, φ±j , j =
1, . . . , n, on Dε which can be written explicitly. Using cylindrical coordinates,
and writing the Delaunay metric gε = u

4/(n−2)
ε (dt2 + dθ2), then

(4.4) φ±j = e±t

(
n− 2

2
uε ±

duε

dt

)
ψj(θ),

where ψj(θ) are the eigenfunctions for ∆θ with eigenvalue n−1 on Sn−1, are also
solutions of Lεφ = 0. Like the φ±0 , but unlike all the other Jacobi fields for gε,
these arise as derivatives of explicit one-parameter families of solutions. In fact,
regarding Delaunay solutions as metrics on Sn with two singular points, we can
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pull these metrics back by any conformal transformation of Sn to obtain new
solution metrics, also in M2. Families of solutions are obtained by pulling back
by families of conformal transformations. If we differentiate the family obtained
from the one-parameter family of conformal transformations fixing both singular
points, we obtain φ+

0 . If we differentiate, on the other hand, the families of
parabolic conformal transformations fixing one or the other of the singular points
of the original gε, we obtain these other φ±j . These parabolic transformations
correspond to the translations on the images, Rn, of the stereographic projection
from Sn with one of the singular points removed. The parabolic transformations
moving one singular point lead to Jacobi fields blowing up exponentially at that
singular point and decaying exponentially at the other. Their exact decay rate
is given by (4.4). Combining this with the earlier discussion of the Fredholm
properties of Lε on weighted Sobolev spaces, we see that Lε is not Fredholm on
the space Hs

δ1
, with exponential weight δ1 = Pε. Actually, as proved in [MPU],

Lε is Fredholm on all other weighted spaces Hs
δ for 0 < δ < δ1 +η, δ 6= δ1, where

η is some small positive number depending on ε.
If g is any CPSC metric on Sn \ Λ, with Λ finite, then in a neighborhood

of each xj ∈ Λ, g is asymptotically equivalent to a Delaunay metric. Approx-
imate Jacobi fields may be constructed by transplanting cutoffs of the Jacobi
fields φ±j , j = 0, . . . , n, from the appropriate Dε to a neighborhood of each xj .
This, together with the approximate Jacobi fields corresponding to φ±0 , yields a
2k(n + 1)-dimensional family of approximate Jacobi fields, which we denote by
W; it substitutes for the deficiency space W in the analysis of the unmarked
moduli space. Note that W ⊂ Hs

δ1+δ for any δ > 0. Since there are good
parametrices for Lg (constructed in [MPU]), and since the elements of W, in
particular those of W , correspond to one-parameter families of solutions, the
marked nondegeneracy conditions (2.13) and (2.15)–(2.17) reduce simply to the
hypothesis that Lg is injective on Hs

−δ1−δ for any δ > 0. By contrast, we make
the

(4.5) Definition. The solution (g,Λ) ∈ Mk is called unmarked nondegen-
erate if the linearized operator Lg has no nullspace in Hs

−δ1−δ for any δ > 0.

By duality, g is unmarked nondegenerate if and only if

Lg : Hs+2
δ1+δ → Hs

δ1+δ

is surjective for δ > 0 sufficiently small. Using the parametrix construction and
the proof of the linear decomposition lemma (4.18) from [MPU] we obtain

(4.6) Lemma. Suppose that (g,Λ) ∈ Mk is unmarked nondegenerate. Then
there exists a bounded map G from Hs

δ1+δ to Hs+2
δ1+δ such that LgG = I. If we

restrict the domain of G to Hs
−δ1−δ, then its range is Hs+2

−δ1−δ⊕W. In particular,
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(4.7) Lg : Hs+2
−δ1−δ ⊕W → Hs

−δ1−δ

is surjective.

The dimension of the space W is 2k(n+ 1) and its elements are the possible
parameters for deformations of (g,Λ) ∈ Mk. Which deformations actually occur
is a difficult question; however, by a relative index theorem as in [MPU] we have

(4.8) Lemma. The kernel of the map (4.7) has dimension k(n+ 1).

We also require an analogue of (2.17), that the elements of W (which are
sufficiently small in norm) can be “exponentiated” to one-parameter families of
metrics which are locally of CPSC near the singular points. Thus let w ∈ W; we
can write it as a sum

w =
k∑

`=1

n∑
j=0

a
(`)
j,±χ

(`)φ±j

near each singular point x`. Here χ(`) are fixed cutoff functions equaling one in
a small ball around x` and vanishing outside a slightly larger ball. We identify
w with the collection of coefficients a = {a(`)

j,±} ∈ R2k(n+1). Then by a procedure
very similar to the one in §2, we define a metric ga by altering g in the neighbor-
hoods Bσ(x`) according to the amounts specified by the coefficients a. The first
step is to identify the Delaunay solution Dε`

to which g is asymptotic in Bσ(x`).
In this ball we can write g = (1 + v)4/(n−2)gε, where v = O(r). We first confor-
mally deform v to equal zero in Bσ/2(x`). The new metric g̃ is exactly Delaunay
in these smaller balls, and is unchanged outside the larger balls. Now we can
alter g̃ in this smaller ball in a manner specified by the parameters a ∈ R2k(n+1);
the new metric we obtain is denoted ga. We demonstrated earlier how to do
this for the coefficients a0,± = {a, b} for the Delaunay solutions, and since this
change was supported in the half-cylinder that discussion obviously localizes to
these half-Delaunay solutions. The analogous procedure for the other coefficients
is defined exactly as before. Note that the singular points x` will be moved in
this procedure if any one of the a(`)

j,+ is nonzero.
Now we may define the nonlinear operator

N : Hs+2
−δ1−δ ⊕W → Hs

−δ1−δ

for small elements w ∈ W at the metric g ∈ Mk by

N(v, w) = ∆ga(1 + v)− n− 2
4(n− 1)

R(ga)(1 + v) +
n(n− 2)

4
(1 + v)(n+2)/(n−2),

where w ∈ W determines the coefficients a. This is clearly a real analytic
mapping. A neighborhood V of g in Mk is given as the zero set of this map
N in Hs+2

−δ1−δ ⊕W. Its linearization coincides with the linearization Lg acting
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on Hs+2
−δ1−δ ⊕W. The analytic implicit function theorem and the relative index

theorem of [MPU] now give

(4.9) Proposition. If g ∈ Mk is unmarked nondegenerate, so that

Lg : Hs+2
−δ1−δ ⊕W → Hs

−δ1−δ

is surjective, then there is a neighborhood V of g ∈ Mk which is a real analytic
manifold of dimension k(n+ 1).

When g is unmarked degenerate a somewhat weaker statement is true:

(4.10) Proposition. If g ∈ Mk is unmarked degenerate, then there is a
neighborhood X of (0, 0) ∈ Hs+2

−δ1−δ ⊕W and a real analytic diffeomorphism Ψ
from this neighborhood to itself such that Ψ(N−1(0) ∩ X ) lies in a neighborhood
of zero Y in a finite-dimensional subspace P and coincides with the zero set of
a real analytic mapping from Y to CN , where N is the dimension of the kernel
of Lg on Hs

−δ1−δ.

The proof of this final proposition is identical to the one in [KMP], and thus
we give only the briefest sketch and refer there for the details. We use what
is often called the Lyapunov–Schmidt or Kuranishi method. Let K denote the
nullspace of L on Hs

−δ1−δ, which is nontrivial since g is unmarked degenerate.
Then

L : Hs+2
−δ1−δ ⊕W ⊕K → Hs

−δ1−δ

defined by L(v, w, k) = Lg(v+w)+k is surjective, by construction. We can sim-
ilarly define N (v, w, k) = N(v, w) + k, so that L is the (surjective) linearization
of N . The zero set of N is identified with the set {(v, w, k) : N (v, w, k) = k}.
Using the implicit function theorem for N , we can show that this set is real
analytic.

It is clear that the projection π : Mk → Ck is real analytic.
We now combine these last two results with the results of the last subsection.

(4.11) Corollary. Suppose that k = 2N and that some component of Mk

contains an element (g,Λ), where Λ is a dipole configuration and g a dipole
metric. Then (g,Λ) is in the principal stratum of that component, and this
principal stratum is nonsingular and has dimension 2N(n+1). Let π̃ denote the
restriction of the projection π to this component of Mk and let C be the image
of π̃ in Ck. Then C is a subanalytic set, with principal stratum of dimension
kn = 2Nn, and the preimage MΛ′ of any configuration Λ′ in this principal
stratum is a moduli space with a nonsingular k = 2N -dimensional principal
stratum composed of nondegenerate elements.
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As a final remark we note that the singular strata for these moduli spaces may
in fact be trivial. In [MPU] we show that they are trivial for generic conformal
classes. In fact, we do not know whether degenerate solutions exist in any case.
Either a construction of degenerate solutions, or a geometric criterion for their
presence or absence, would be quite interesting.
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