PERIODIC PROCESSES AND NON-AUTONOMOUS EVOLUTION EQUATIONS WITH TIME-PERIODIC TERMS¹

V. V. Chepyzhov — M. I. Vishik

Dedicated to Jean Leray

1. Introduction

We study attractors of periodic processes corresponding to non-autonomous evolution equations with right-hand sides periodic in time. The notion of a process generalizes the notion of a semigroup which describes the dynamics of autonomous equations. We consider Cauchy problems of the type

(1)
$$\partial_t u = A(u, t), \quad u|_{t=\tau} = u_{\tau}, \quad t \ge \tau, \ \tau \in \mathbb{R}.$$

Here $A(\cdot,t): E_1 \to E_0, \ t \in \mathbb{R}$, is a family of non-linear operators periodic in time with period $p: A(\cdot,t+p) = A(\cdot,t)$ for $t \in \mathbb{R}$, where E_1 and E_0 are Banach spaces, usually with $E_1 \subseteq E_0$. The initial data u_τ is taken in a Banach space E. Assume that for any $\tau \in \mathbb{R}$ and every $u_\tau \in E$ there exists a unique solution $u(t), \ t \geq \tau$, of the problem (1) such that $u(t) \in E$ for all $t \geq \tau$. Consider the two-parametric family of mappings $\{U(t,\tau): t \geq \tau, \tau \in \mathbb{R}\}, \ U(t,\tau): E \to E, \ U(t,\tau)u_\tau = u(t), \ t \geq \tau$, where u(t) is the solution of the problem (1). The family $\{U(t,\tau)\}$ is said to be the process corresponding to the problem (1). Evidently, the process $\{U(t,\tau)\}$ is periodic in time with period p, i.e. $U(t+p,\tau+p) = U(t,\tau)$

 $^{^1}$ This work was partially supported by grant from Russian Foundation of Fundamental Research and by grant N° MR5000 from International Science Foundation.

for all $t \geq \tau$, $\tau \in \mathbb{R}$. We use the notion of the attractor to describe the limit behavior of the process as $t-\tau$ tends to infinity. The attractor \mathcal{A} of $\{U(t,\tau)\}$ is a minimal closed attracting set of the process. The attracting property of \mathcal{A} means that for any bounded set $B \subseteq E$, $\operatorname{dist}_E(U(t,\tau)B, \mathcal{A}) \to 0$ as $t-\tau \to +\infty$. The property of minimality is the natural generalization of the invariance property in the definition of a semigroup attractor.

One method to construct the attractor for a periodic process is to study the attractors $\mathcal{A}(\delta)$ of the discrete semigroups $\{S_n(\delta)\}_{n\in\mathbb{Z}_+}$ where $S_n(\delta)=U(\delta+np,\delta), \delta\in\mathbb{R}$ (see [9]). The union of these attractors is the attractor of the initial periodic process:

$$\mathcal{A} = \bigcup_{\delta \in \mathbb{R}} \mathcal{A}(\delta).$$

Another way, described in [11] and [12], is the direct investigation of ω -limit sets of the process.

We present an alternative approach. We study a continuous semigroup $\{S(t) \mid t \geq 0\}$ acting in the extended phase space $E \times \mathbb{T}^1$, where \mathbb{T}^1 is the circle of length p. The operators S(t) are defined by

(2)
$$S(t)(u, \delta) = (U(\delta + t, \delta)u, (\delta + t) \bmod p).$$

It is easily seen that (2) defines a semigroup in $E \times \mathbb{T}^1$.

In Section 2 we formulate the main definitions and theorems on the attractors of general processes from [3], [4] and [6] that we intend to use.

In Section 3 we prove theorems on the existence and structure of the attractor for a periodic process. We also give some properties of the attractor which describe the character of attraction.

In Section 4 we estimate from above the fractal and Hausdorff dimensions of the attractors of periodic processes.

Section 5 contains applications of the above results to problems arising in mathematical physics. We study the following equations and systems:

- (i) the two-dimensional Navier-Stokes system with external forces periodic in time;
- (ii) non-autonomous reaction-diffusion system with periodic interaction function f(u,t) and with periodic external forces $\varphi(x,t)$ $(f(u,t+p)=f(u,t), \varphi(x,t+p)=\varphi(x,t));$
- (iii) damped hyperbolic equation with periodic terms.

Note that the dimension of the attractor \mathcal{A} of a periodic process in all the above examples satisfies dim $\mathcal{A} \leq \dim \mathcal{A}(0) + 1$, where $\mathcal{A}(0)$ is the attractor of the

corresponding discrete semigroup. This inequality was formulated by Haraux in [11] as a conjecture.

Finally, notice that [3], [4] and [6] contain estimates from above for the Hausdorff dimension of the attractors of non-autonomous equations and systems with quasiperiodic terms.

2. Preliminaries

First of all, we recall some definitions concerning processes and their attractors. A two-parametric family of mappings $\{U(t,\tau)\}=\{U(t,\tau):t\geq\tau,\ \tau\in\mathbb{R}\},\ U(t,\tau):E\to E$, acting in a Banach space E is said to be a process if

$$U(t,\tau) = U(t,s)U(s,\tau), \quad U(\tau,\tau) = I, \qquad \forall \tau \in \mathbb{R}, \ \tau \le s \le t.$$

A process $\{U(t,\tau)\}$ is called *periodic* with period p if

$$U(t+p, \tau+p) = U(t, \tau), \quad \forall t \ge \tau, \tau \in \mathbb{R}.$$

A set $P_0 \subseteq E$ is said to be an attracting set of the process $\{U(t,\tau)\}$ if for any $\tau \in \mathbb{R}$ and for every bounded set $B \subseteq E$,

(1)
$$\operatorname{dist}_{E}(U(t,\tau)B, P_{0}) \to 0 \qquad (t \to +\infty).$$

A set $P \subseteq E$ is said to be a uniformly (in $\tau \in \mathbb{R}$) attracting set of the process $\{U(t,\tau)\}$ if (1) holds uniformly in $\tau \in \mathbb{R}$, i.e.

(2)
$$\sup_{\tau \in \mathbb{R}} \operatorname{dist}_{E}(U(T+\tau,\tau)B, P) \to 0 \qquad (T \to +\infty).$$

A process $\{U(t,\tau)\}$ is called asymptotically (uniformly asymptotically) compact if it has a compact attracting (uniformly attracting) set.

DEFINITION 1. (i) A closed set $A_0 \subseteq E$ is said to be the *attractor* of a process $\{U(t,\tau)\}$ if A_0 is a minimal closed attracting set of $\{U(t,\tau)\}$. The minimality means that any closed attracting set contains A_0 .

(ii) A closed set $A_1 \subseteq E$ is said to be the uniform (in $\tau \in \mathbb{R}$) attractor of a process $\{U(t,\tau)\}$ if A_1 is a minimal closed uniformly (in $\tau \in \mathbb{R}$) attracting set of $\{U(t,\tau)\}$.

These definitions were introduced in [11] and [12]. To construct the attractor for a periodic process, we shall use the results of [6], where we studied the attractors for more general processes and families of processes. For the sake of completeness, we recall the necessary definitions and theorems from [6].

Suppose we are given a family of processes $\{U_{\sigma}(t,\tau)\}$, depending on a function parameter σ in a complete metric space Σ . The parameter σ is called the *symbol* of the process $\{U_{\sigma}(t,\tau)\}$, and Σ is the *symbol space*. By analogy, we introduce the following definitions.

DEFINITION 2. (i) A set P_{Σ} is said to be uniformly (in $\sigma \in \Sigma$) attracting for the family of processes $\{U_{\sigma}(t,\tau)\}$, $\sigma \in \Sigma$, if for any $\tau \in \mathbb{R}$ and every bounded set $B \subseteq E$,

$$\sup_{\sigma \in \Sigma} \operatorname{dist}_{E}(U_{\sigma}(t, \tau)B, P_{\Sigma}) \to 0 \qquad (t \to +\infty).$$

(ii) A set A_{Σ} is said to be the *uniform attractor* of the family of processes $\{U_{\sigma}(t,\tau)\}$, $\sigma \in \Sigma$, if it is a minimal closed uniformly (in $\sigma \in \Sigma$) attracting set of that family.

A family of processes with a compact uniformly attracting set is called *uniformly asymptotically compact*. As was shown in [6] (and also in [11] and [12] using different terminology), a uniformly asymptotically compact family of processes always has a compact uniform attractor.

Now we shall investigate the structure of uniform attractors more closely under some additional conditions. We assume that some strictly invariant semi-group $\{T(t): t \geq 0\}$ acts on $\Sigma: T(t): \Sigma \to \Sigma$ and $T(t)\Sigma = \Sigma$ for all $t \geq 0$. Let us also assume the following translation identity:

(3)
$$U_{\sigma}(t+s,\tau+s) = U_{T(s)\sigma}(t,\tau), \quad \forall \sigma \in \Sigma, \ t \geq \tau, \ t,\tau \in \mathbb{R}, \ s \geq 0.$$

We define the family $\{S(t): t \geq 0\}$ of mappings of $E \times \Sigma$ into $E \times \Sigma$ by:

(4)
$$S(t)(u, \sigma) = (U_{\sigma}(t, 0)u, T(t)\sigma), \qquad t \ge 0, \ (u, \sigma) \in E \times \Sigma.$$

One can easily check using (3) that $\{S(t)\}$ is a semigroup acting on $E \times \Sigma$: $S(t_1)S(t_2) = S(t_1 + t_2)$ for all $t_1, t_2 \ge 0$ and S(0) = I (see [6]).

A curve $\{u(s): s \in \mathbb{R}\}$ in E is said to be a *complete trajectory* of the process $\{U(t,\tau)\}$ if $U(t,\tau)u(\tau)=u(t)$ for all $t \geq \tau$, $t,\tau \in \mathbb{R}$.

DEFINITION 3. The kernel K of the process $\{U(t,\tau)\}$ consists of all bounded complete trajectories of $\{U(t,\tau)\}$:

$$\mathcal{K} = \{u(\cdot) : u(t), t \in \mathbb{R}, \text{ is a complete trajectory of } \{U(t, \tau)\}$$

and $\|u(t)\|_E \leq C_u \ \forall t \in \mathbb{R}\}.$

The set $\mathcal{K}(s) = \{u(s) : u(\cdot) \in \mathcal{K}\}$ is called the *kernel section* at time t = s, $s \in \mathbb{R}$.

In the sequel $\Pi_1: E \times \Sigma \to E$ and $\Pi_2: E \times \Sigma \to \Sigma$ are the canonical projections.

A family of operators $\{U_{\sigma}(t,\tau)\}$, $\sigma \in \Sigma$, is said to be $(E \times \Sigma, E)$ -continuous if for any fixed t and τ the mapping $(u,\sigma) \mapsto U_{\sigma}(t,\tau)u$ is continuous from $E \times \Sigma$ into E.

Let us formulate the main theorem on attractors of families of processes.

THEOREM 1. Suppose a family of processes $\{U_{\sigma}(t,\tau)\}$, $\sigma \in \Sigma$, acting in a space E is uniformly (in $\sigma \in \Sigma$) asymptotically compact and $(E \times \Sigma, E)$ -continuous. Moreover, suppose Σ is a compact metric space and let $\{T(t)\}$ be a continuous strictly invariant semigroup on Σ satisfying the translation identity (3). Then the semigroup $\{S(t)\}$ corresponding to the family $\{U_{\sigma}(t,\tau)\}$, $\sigma \in \Sigma$, and acting on $E \times \Sigma$ by the formula (4) has a compact attractor A : S(t)A = A for all $t \geq 0$. Moreover,

- (i) $\Pi_1 \mathcal{A} = \mathcal{A}_{\Sigma}$ is the uniform (in $\sigma \in \Sigma$) attractor of the family of processes $\{U_{\sigma}(t,\tau)\}, \ \sigma \in \Sigma$;
- (ii) $\Pi_2 \mathcal{A} = \Sigma$;
- (iii) $A_{\Sigma} = \bigcup_{\sigma \in \Sigma} \mathcal{K}_{\sigma}(0)$. Here \mathcal{K}_{σ} is the kernel of the process $\{U_{\sigma}(t,\tau)\}$ with symbol $\sigma \in \Sigma$.

Note that the section $\mathcal{K}_{\sigma}(0)$ in (iii) can be replaced by any $\mathcal{K}_{\sigma}(t)$, where $t \in \mathbb{R}$.

Theorem 1 was proved in [6]. It follows from a general theorem on semigroup attractors (see, for example, [1], [10] and [17]) applied to the semigroup (4). Papers [3], [4] and [6] contain many examples of different non-autonomous dynamical systems having uniform attractors according to Theorem 1.

In Section 3 we apply Theorem 1 to the study of the attractors of periodic processes.

3. Attractors of periodic processes

Let $\{U(t,\tau)\}$ be a periodic process (with period p, p > 0) acting in a Banach space E: $U(t+p,\tau+p) = U(t,\tau)$ for all $t \geq \tau$; $t,\tau \in \mathbb{R}$. Let $\{U_{\sigma}(t,\tau)\}$ be the family of processes depending on $\sigma \in \mathbb{T}^1$ ($\mathbb{T}^1 = \mathbb{R} \mod p$ is a one-dimensional torus), defined by

(1)
$$U_{\sigma}(t,\tau) = U(t+\sigma,\tau+\sigma).$$

Clearly, the existence of a uniformly (in $\sigma \in \mathbb{T}^1$) attracting set $P \subseteq E$ for the family $\{U_{\sigma}(t,\tau)\}$, $\sigma \in \mathbb{T}^1$, is equivalent to the existence of a uniformly (in $\tau \in \mathbb{R}$) attracting set for the original periodic process $\{U(t,\tau)\}$. Note that, by periodicity, the uniform (in $\tau \in \mathbb{R}$) attracting property (2.2) is equivalent to the uniform attracting property with respect to $\tau \in [0, p)$:

$$\sup_{\tau \in [0,p)} \operatorname{dist}_{E}(U(T+\tau,\tau)B, P) \to 0 \qquad (T \to +\infty).$$

The following rotation semigroup $\{T(t)\}$ acts on the symbol space $\Sigma = \mathbb{T}^1$:

$$T(t)\sigma = (t + \sigma) \mod p, \qquad t \ge 0, \ \sigma \in \mathbb{T}^1.$$

Clearly, the translation identity (1.3) is valid. Indeed,

$$U_{\sigma}(t+s,\tau+s) = U(t+s+\sigma,\tau+s+\sigma)$$

$$= U(t+(s+\sigma)(\operatorname{mod} p),\tau+(s+\sigma)(\operatorname{mod} p))$$

$$= U(t+T(s)\sigma,\tau+T(s)\sigma) = U_{T(s)\sigma}(t,\tau).$$

Consequently, the family $\{U_{\sigma}(t,\tau)\}$, $\sigma \in \mathbb{T}^1$, generates the semigroup $\{S(t)\}$ acting in the extended phase space $E \times \mathbb{T}^1$ by the formula (2.4):

(2)
$$S(t)(u, \sigma) = (U(t + \sigma, \sigma)u, (t + \sigma) \mod p), \qquad t \ge 0, (u, \sigma) \in E \times \mathbb{T}^1.$$

Let us formulate the theorem on the attractor of a periodic process.

THEOREM 1. Let $\{U(t,\tau)\}$ be a periodic, uniformly (in $\tau \in \mathbb{R}$) asymptotically compact, and $(E \times \mathbb{T}^1, E)$ -continuous process. Then the semigroup $\{S(t) : t \geq 0\}$ acting in $E \times \mathbb{T}^1$ by means of the formula (2) has a compact, strictly invariant attractor A: S(t)A = A for all $t \geq 0$. Moreover,

- (i) $\Pi_1 A = A_1$ is the uniform (in $\tau \in \mathbb{R}$) attractor of the process $\{U(t,\tau)\}$;
- (ii) $A_1 = \bigcup_{\sigma \in [0, p) = \mathbb{T}^1} \mathcal{K}(\sigma)$, where $\mathcal{K}(\sigma)$ is the section at time $t = \sigma$ of the kernel \mathcal{K} of the process $\{U(t, \tau)\}$.

PROOF. This follows from Theorem 2.1.

REMARK 1. Notice that the set $A_1 = A_0$ also serves as the (non-uniform) attractor of the periodic process $\{U(t,\tau)\}$. In other words, under the assumptions of Theorem 1, the uniform attractor of the periodic process coincides with the (non-uniform) attractor of this process.

The proof of this assertion is given in [7]. For more general processes it is, in general, not true. A counter-example was constructed by Haraux in [12].

Below we study in more detail the kernel sections K(t), $t \in \mathbb{R}$, of a periodic process $\{U(t,\tau)\}$ satisfying the assumptions of Theorem 1.

Notice that if $u(\cdot) \in \mathcal{K}$ then $u_p(\cdot) \in \mathcal{K}$, where $u_p(t) = u(t+p)$. Therefore,

(3)
$$\mathcal{K}(t+p) = \mathcal{K}(t), \quad \forall t \in \mathbb{R}.$$

PROPOSITION 2. The following identity is valid:

(4)
$$U(t,\tau)\mathcal{K}(\tau) = \mathcal{K}(t), \qquad t \ge \tau; \ t,\tau \in \mathbb{R}.$$

This follows directly from the definition of kernel sections.

We shall prove below that the attractor A_0 of the periodic process $\{U(t,\tau)\}$ can be obtained in another way using attractors of the corresponding discrete

semigroups. Let us introduce the family of discrete semigroups $\{S_n(\delta) : n \in \mathbb{Z}_+\}$ depending on a parameter $\delta \in \mathbb{T}^1$:

(5)
$$S_n(\delta) = U(\delta + np, \delta), \quad S_n(\delta) : E \to E, \quad n \in \mathbb{Z}_+, \ \delta \in \mathbb{T}^1.$$

For any $\delta \in \mathbb{T}^1$ the operators $\{S_n(\delta) : n \in \mathbb{Z}_+\}$ form a semigroup. Indeed,

$$S_n(\delta) = U(np + \delta, \delta)$$

$$= U(np + \delta, (n-1)p + \delta)U((n-1)p + \delta, (n-2)p + \delta) \dots U(p + \delta, \delta)$$

$$= (U(p + \delta, \delta))^n = (S_1(\delta))^n.$$

PROPOSITION 3. Under the assumptions of Theorem 1, the kernel section $\mathcal{K}(\delta)$ is the attractor of the discrete semigroup $\{S_n(\delta)\}$.

PROOF. It follows from the $(E \times \mathbb{T}^1, E)$ -continuity of the process $\{U(t, \tau)\}$ that each semigroup $\{S_n(\delta)\}$ is (E, E)-continuous. At the same time, it is asymptotically compact, because the periodic process $\{U(t, \tau)\}$ is uniformly asymptotically compact. These two facts imply that each semigroup $\{S_n(\delta)\}$ has a compact attractor $\mathcal{A}(\delta)$:

(6)
$$S_n(\delta)\mathcal{A}(\delta) = \mathcal{A}(\delta), \quad \forall n \in \mathbb{Z}_+, \ \mathcal{A}(\delta) \in E.$$

On the other hand, by (3) and (4),

$$S_n(\delta)\mathcal{K}(\delta) = U(np + \delta, \delta)\mathcal{K}(\delta) = \mathcal{K}(np + \delta) = \mathcal{K}(\delta),$$

i.e. $\mathcal{K}(\delta)$ is bounded and strictly invariant (with respect to $\{S_n(\delta)\}$) set. Hence, by the attracting property, $\mathcal{K}(\delta) \subseteq \mathcal{A}(\delta)$ for all $\delta \in \mathbb{T}^1$. Let us check the reverse inclusion. Let $u_\delta \in \mathcal{A}(\delta)$. We shall construct a bounded complete trajectory $u(t), t \in \mathbb{R}$, of the process $\{U(t,\tau)\}$ such that $u(\delta) = u_\delta$. Put $u(t) = U(t,\delta)u_\delta$ for $t \geq \delta$. Evidently, for $t \geq \delta$ the function u(t) is a trajectory of the process. Let us extend u(t) for $t < \delta$. According to (6) the equation

$$S_1(\delta)u_{\delta-1}=u_{\delta}$$

has at least one solution $u_{\delta-1} \in \mathcal{A}(\delta)$. Now we put $u(\delta-p) = u_{\delta-1}$ and define u(t) for $\delta-p \leq t < \delta$ by $u(t) = U(t,\delta-p)u_{\delta-1}$. Clearly, u(t) is a trajectory of $\{U(t,\tau)\}$ for $t \geq \delta-p$. Continuing this procedure one can construct the trajectory u(t) for $t \geq \delta-np$ so that $u(\delta-np) \in \mathcal{A}(\delta)$. Letting $n \to +\infty$ we get a complete trajectory of the process. Let us show that this trajectory is bounded. The set $\mathcal{A}(\delta)$ is bounded. The process $\{U(t,\tau)\}$ is uniformly asymptotically

compact, therefore, for some compact set $P_1 \subseteq E$ there exists $T \geq \delta$ such that $U(t,\delta)\mathcal{A}(\delta) \subseteq B_1$ for $t \geq T$. Here $B_1 = \mathcal{O}_{\varepsilon}(P_1)$ is the ε -neighborhood of P_1 for some ε . In particular, $u(t+np) = U(t,\delta)u(\delta+np) \subseteq B_1$ for all $t \geq T$ and $n \in \mathbb{Z}$. Therefore, $u(t_1) \in B_1$ for any $t_1 \in \mathbb{R}$, i.e. the trajectory u(t) is bounded. Finally, u_{δ} belongs to the bounded complete trajectory u(t), $u_{\delta} = u(\delta) \in \mathcal{K}(\delta)$, and $\mathcal{A}(\delta) \subseteq \mathcal{K}(\delta)$. Hence, $\mathcal{A}(\delta) = \mathcal{K}(\delta)$.

Now we shall formulate some properties of the kernel sections $\mathcal{K}(\delta)$ under the condition that for any fixed $\tau \in \mathbb{R}$ the periodic process $\{U(t,\tau)\}$ is continuous as a mapping $(u,t) \mapsto U(t,\tau)u$ from $E \times \mathbb{R}$ into E.

THEOREM 4. Suppose a periodic process $\{U(t,\tau)\}$ satisfies the assumptions of Theorem 1 and it is continuous with respect to $u \in E$ and $t \geq \tau$ for any fixed τ . Then:

(i) for any $\varepsilon > 0$ there exists $\delta > 0$ such that $|t - s| < \delta$ implies

(7)
$$\operatorname{dist}_{E}(\mathcal{K}(t), \mathcal{K}(s)) \leq \varepsilon;$$

(ii) for any bounded subset B of E,

(8)
$$\operatorname{dist}_{E}(U(t,\tau)B,\mathcal{K}(t)) \to 0$$
 as $t \to +\infty$.

The proof of Theorem 4 can be found in [7].

Remark 2. The property (8) can be strengthened in the following way:

$$\sup_{\tau \in \mathbb{R}} \operatorname{dist}_{E}(U(T+\tau,\tau)B,\mathcal{K}(T+\tau)) \to 0 \qquad \text{as } T \to +\infty.$$

A process $\{U(t,\tau)\}$ has the backward uniqueness property, if $U(t,\tau)u_1 = U(t,\tau)u_2$ implies that $u_1 = u_2$.

PROPOSITION 5. If a periodic process $\{U(t,\tau)\}$ satisfies the assumptions of Theorem 1 and has the backward uniqueness property then the mapping $U(t,\tau)$: $\mathcal{K}(\tau) \to \mathcal{K}(t)$ is a homeomorphism.

This follows directly from Proposition 1.

4. Fractal and Hausdorff dimensions of the attractors of periodic processes

We recall the definitions of the fractal and Hausdorff dimensions of subsets of a Banach space E. Let X be a compact subset of E. We denote by $B_r(x)$ the ball in E of radius r with center at x. Given $d \in \mathbb{R}_+$ and $\varepsilon > 0$, we set

$$\mu_H(X, d, \varepsilon) = \inf \sum r_i^d,$$

where the inf is taken over all coverings of X by balls $B_{r_i}(x_i)$ of radii $r_i \leq \varepsilon$. Let $\mu_H(X, d)$ denote the d-dimensional Hausdorff measure of X:

$$\mu_H(X,d) = \lim_{\varepsilon \to 0} \mu_H(X,d,\varepsilon) = \sup_{\varepsilon > 0} \mu_H(X,d,\varepsilon).$$

The quantity $d_H(X) = \inf\{d : \mu_H(X,d) = 0\}$ is the Hausdorff dimension of X. By analogy, one introduces the fractal dimension of X. Let $n(\varepsilon, X)$ be the minimal number of balls having radii ε which cover X. The d-dimensional fractal measure is defined by

$$\mu_F(X,d) = \limsup_{\varepsilon \to 0} \varepsilon^d n(\varepsilon,X) = \limsup_{\varepsilon \to 0} \ \mu_F(X,d,\varepsilon).$$

The fractal dimension of X is

$$d_F(X) = \inf\{d : \mu_F(X, d) = 0\}.$$

It is clear that $\mu_H(X,d) \leq \mu_F(X,d)$ and $d_H(X) \leq d_F(X)$.

Notice that in the definitions of the Hausdorff and fractal dimensions we may use coverings by balls with centers belonging to X. We shall consider only such coverings.

Let K_0 be a compact subset of E. Consider a mapping $\Phi: K_0 \times [0,T] \to E$ such that $\Phi(x,0) = x$ for all $x \in K_0$. We assume that Φ satisfies the Lipschitz condition with respect to x and t:

(1)
$$\|\Phi(x_1, t_1) - \Phi(x_2, t_2)\|_E \le k(\|x_1 - x_2\|_E + |t_1 - t_2|),$$

 $\forall x_1, x_2 \in K_0, \ \forall t_1, t_2 \in [0, T].$

Proposition 1. Let $K_t = \Phi(K_0, t), t \in [0, T]$. Then

$$(2) d_F(K_t) \le d_F(K_0),$$

$$(3) d_H(K_t) \le d_H(K_0).$$

PROOF. Fix $\varepsilon > 0$ and let $K_0 \subseteq \bigcup_{i=1}^N B_{\varepsilon}(x_i)$ with all $x_i \in K_0$. Then

$$K_t \subseteq \bigcup_{i=1}^N \Phi(B_{\varepsilon}(x_i), t) \subseteq \bigcup_{i=1}^N B_{\varepsilon k}(\Phi(x_i, t))$$

by (1). Therefore, $\mu_F(K_t, d, \varepsilon k) \leq k^d \mu_F(K_0, d, \varepsilon)$, i.e. $\mu_F(K_t, d) \leq k^d \mu_F(K_0, d)$. The inequality (2) is proved. Using the same reasoning one can establish (3). \square

Proposition 2. Let $\Xi = \bigcup_{t \in [0,T]} \Phi(K_0,t)$. Then

$$(4) d_F(\Xi) \le d_F(K_0) + 1,$$

(5)
$$d_H(\Xi) \le d_H(K_0) + 1.$$

PROOF. Fix $\varepsilon > 0$ and cover K_0 by balls with radii $\varepsilon/(2k)$ and centers x_1, \ldots, x_N . Then for any $t \in [0,T]$ the balls $B_{\varepsilon/2}(\Phi(x_1,t)), \ldots, B_{\varepsilon/2}(\Phi(x_N,t))$ cover K_t (by (1)). Now $0 = t_0 < t_1 < \ldots < t_n = T$ be a partition of [0,T], where $0 < t_{i+1} - t_i \le \varepsilon/(2k)$. Then $n \le 2Tk/\varepsilon$. Consider the collection of balls $\{B_{\varepsilon}(\Phi(x_j,t_i)): j=1,\ldots,N, i=1,\ldots,n\}$. This collection covers Ξ . Indeed $\forall \Phi(x,t) \exists x_j: \|\Phi(x,t) - \Phi(x_j,t)\| < \varepsilon/2$ and $\exists t_i: |t-t_i| < \varepsilon/(2k)$; then

$$\begin{split} \|\Phi(x,t) - \Phi(x_j,t_i)\| &\leq \|\Phi(x,t) - \Phi(x_j,t)\| \\ &+ \|\Phi(x_j,t) - \Phi(x_j,t_i)\| < \varepsilon/2 + k\varepsilon/(2k) = \varepsilon. \end{split}$$

Hence, $\Phi(x,t) \in B_{\varepsilon}(\Phi(x_j,t_i))$. Therefore,

$$\mu_F(\Xi, d+1, \varepsilon) \le nN\varepsilon^{d+1} \le 2TkN\varepsilon^d = 2Tk(2k)^dN\left(\frac{\varepsilon}{2k}\right)^d,$$

i.e. $\mu_F(\Xi, d+1, \varepsilon) \leq T(2k)^{d+1} \mu_F(K_0, d, \varepsilon/(2k))$, and $\mu_F(\Xi, d+1) \leq T(2k)^{d+1} \times \mu_F(K_0, d)$. Finally, $d_F(\Xi) \leq d_F(K_0) + 1$. Estimate (4) is proved.

To prove (5), we cover the set K_0 by balls with (maybe) different radii: $\{B_{\varepsilon_j}(x_j)\}$, where $\varepsilon_j \leq \varepsilon/(2k)$. Then for any fixed point x_j , we partition the segment [0,T] into intervals of length $\tau_j \leq \varepsilon_j/(2k)$ by points $0=t_0^j < t_1^j < \ldots < t_{n_j}^j = T$. Then $n_j \leq 2Tk/\varepsilon_j$. The family of balls $\{B_{2k\varepsilon_j}(\Phi(x_j,t_i^j)): j=1,\ldots,N, i=1,\ldots,n_j\}$ covers Ξ . Let us estimate $\mu_H(\Xi,d+1,\varepsilon)$ from above.

$$\begin{split} \mu_H(\Xi,d+1,\varepsilon) &\leq \sum_j \sum_{i=1}^{n_j} \varepsilon_j^{d+1} \leq \sum_j \frac{2Tk}{\varepsilon_j} \varepsilon_j^{d+1} \\ &= 2kT \sum_j (\varepsilon_j)^d = (2k)^{d+1} T \sum_j \left(\frac{\varepsilon_j}{2k}\right)^d. \end{split}$$

Hence

$$\mu_H(\Xi, d+1, \varepsilon) \le (2k)^{d+1} T \mu_H(K_0, d, \varepsilon/(2k)).$$

The last inequality implies

$$\mu_H(\Xi, d+1) \le (2k)^{d+1} T \mu_H(K_0, d)$$
 and $d_H(\Xi) \le d_H(K_0) + 1$.

Now we apply the above results to the periodic process $\{U(t,\tau)\}$ under consideration.

THEOREM 3. Suppose the periodic process $\{U(t,\tau)\}$ satisfies the assumptions of Theorem 3.1, and for any compact set $K \in E$ the mapping $(u,t) \mapsto U(t,\tau)u$ from $K \times [\tau, \tau + T]$ into E satisfies the Lipschitz condition (1). Then

- (i) $d_F(\mathcal{K}(t)) = d_F(\mathcal{K}(0)), d_H(\mathcal{K}(t)) = d_H(\mathcal{K}(0))$ for all $t \in \mathbb{R}$, where \mathcal{K} is the kernel of the process $\{U(t,\tau)\}$,
- (ii) $d_F(\mathcal{A}_0) \leq d_F(\mathcal{K}(0)) + 1, d_H(\mathcal{A}_0) \leq d_H(\mathcal{K}(0)) + 1$, where \mathcal{A}_0 is the attractor of the process $\{U(t,\tau)\}.$

PROOF. Proposition 3.2 implies that $U(t,0)\mathcal{K}(0) = \mathcal{K}(t)$. Therefore, by Proposition 1, $d_F(\mathcal{K}(t)) \leq d_F(\mathcal{K}(0))$. On the other hand, $U(np,t)\mathcal{K}(t) = \mathcal{K}(np) = \mathcal{K}(0)$ (see (3.3)) if $np \geq t$, therefore, $d_F(\mathcal{K}(t)) \geq d_F(\mathcal{K}(0))$, and so $d_F(\mathcal{K}(t)) = d_F(\mathcal{K}(0))$. The same reasoning works for the Hausdorff dimension. Part (ii) follows directly from Proposition 2.

Finally, we conclude that, under certain assumptions, the finite dimensionality of the attractor of a periodic process follows from the finite dimensionality of the kernel sections or (by Proposition 3.3) from the finite dimensionality of the attractors of the discrete semigroups $\{S_n(\delta)\}$.

5. Evolution equations with periodic terms

Consider equations of the type:

(1)
$$\partial_t u = A(u,t), \quad u|_{t=\tau} = u_\tau, \quad t \ge \tau, \ \tau \in \mathbb{R},$$

where for any $t \in \mathbb{R}$ the operator $A(\cdot,t)$ maps a Banach space E_1 into E_0 , where $E_1 \subseteq E_0$. We assume that $A(\cdot,t)$ is time-periodic with period p: $A(\cdot,t+p) = A(\cdot,t)$. The initial conditions u_{τ} of the problem (1) belong to a Banach space E with $E_1 \subseteq E \subseteq E_0$. We assume that for any $\tau \in \mathbb{R}$ and arbitrary $u_{\tau} \in E$ the problem (1) has a unique solution $u(t) \in E, t \geq \tau$. The meaning of the expression "u(t) is a solution of (1)" should be clarified in each particular case. Consider the two-parametric family of operators $\{U(t,\tau): t \geq \tau, \tau \in \mathbb{R}\}, U(t,\tau): E \to E, U(t,\tau)u_{\tau} = u(t)$, where u(t) is the solution of (1). Evidently, $\{U(t,\tau)\}$ is a periodic process acting in E. The kernel K of this process consists of all bounded solutions u(t) of (1) defined for all $t \in \mathbb{R}$: $||u(t)||_{E} \leq C_u$ for all $t \in \mathbb{R}$.

Now we present some examples of dynamical systems arising in mathematical physics. These equations are particular cases of equations with almost periodic and quasiperiodic terms considered in [3], [4], [6]. In these works we have proved the uniform asymptotic compactness and continuity of the corresponding processes. We shall also use the results from [5] on estimating the dimension of kernel sections of non-autonomous equations.

EXAMPLE 1 (Two-dimensional Navier-Stokes system with periodic external force). Excluding the pressure, the system can be written in the form

(2)
$$\partial_t u + Lu + B(u, u) = \varphi, \qquad x = (x_1, x_2) \in \Omega \in \mathbb{R}^2,$$

$$L = -\nu \Pi \Delta, \qquad B(u, u) = \prod_{i=1}^2 u_i \partial_{x_i} u, \qquad \varphi = \prod_{i=0}^2 \varphi_i, \quad u|_{\partial\Omega} = 0,$$

where $u=(u^1,u^2)$, $\varphi=(\varphi^1,\varphi^2)$ (see [13], [18], [1]). By H (resp. H_1) we denote, as usual, the closure of the set $\mathcal{V}_0=\{v:v\in (C_0^\infty(\Omega))^2,(\nabla,v)=0\}$ in the norm $\| \| (\| \|_1)$ of the space $(L_2(\Omega))^2$ ($(H_1(\Omega))^2$), by Π the orthogonal projection of $(L_2(\Omega))^2$ on H and its different extensions. We assume that $\varphi(\cdot,t)\in C_b(\mathbb{R},H)$ is periodic in t with period p, and moreover, for any $\tau\in\mathbb{R}$ and T>0 the function $\varphi'_t(\cdot,t)\in L_2([\tau,\tau+T],H_{-1})$, where $H_{-1}=(H_1)^*$. The initial conditions are posed at $t=\tau$:

$$(3) u|_{t=\tau} = u_{\tau}, u_{\tau} \in H (E = H).$$

It is well known that the problem (2), (3) is uniquely solvable in the class of functions satisfying $u(t) \in C_b([\tau, +\infty), H) \cap L_2([\tau, \tau+T), H_1)$, for all T > 0, and $\partial_t u \in L_2([\tau, \tau+T), H_{-1})$. Thus, the process $\{U(t,\tau) : t \geq \tau\}$, $U(t,\tau)u_\tau = u(t)$, acting on H and corresponding to (2), (3) is defined. The process $\{U(t,\tau)\}$ is uniformly (in $\tau \in \mathbb{R}$) asymptotically compact and $(H \times \mathbb{T}^1, H)$ -continuous (see [6]). Therefore, Theorem 3.1 is applicable. In particular, the set $A_0 = A_1 = \bigcup_{\sigma \in \mathbb{T}^1} \mathcal{K}(\sigma)$ is the attractor and uniform attractor of the process $\{U(t,\tau)\}$; \mathcal{K} is the kernel of the process. It is easily seen that the mapping $(u,t) \mapsto U(t,\tau)u$ is continuous in $(u,t) \in H \times \mathbb{R}_\tau$ for any fixed $\tau \in \mathbb{R}$. Hence, Theorem 3.4 also applies.

In [5] we proved the following estimate for the Hausdorff dimension of the kernel sections $\mathcal{K}(t)$ of the problem (2), (3):

(4)
$$\dim_H K(t) \le \left\lceil \frac{C}{\nu^2} (M_{-1}(|\varphi|^2))^{1/2} \right\rceil, \quad \forall t \in \mathbb{R},$$

where $M_{-1}(|\varphi|^2) = \frac{1}{p} \int_0^p |\varphi(s)|_{-1}^2 ds$, the constant C does not depend on ν and t. Here and below $\lceil a \rceil = \min \{i \in \mathbb{N} : a < i\}$. Theorem 4.1, when applied to the problem (2), (3), can be formulated as follows.

THEOREM 1. Suppose $\varphi(x,t)$ satisfies the above conditions. Then

(i)
$$d_H(\mathcal{K}(t)) = d_H(\mathcal{K}(0)), \quad \forall t \in \mathbb{R},$$

(ii)
$$d_H(\mathcal{A}_0) \le d_H(\mathcal{K}(0)) + 1 \le \left\lceil \frac{C}{\nu^2} (M_{-1}(|\varphi|^2))^{1/2} + 1 \right\rceil.$$

Analogous estimates are also valid for the fractal dimension. The complete proof of Theorem 1 will be given in [7]. The main point is the proof of the Lipschitz condition (4.1) for the problem (2), (3).

EXAMPLE 2 (Reaction-diffusion system with periodic terms). Consider the following system:

(5)
$$\partial_t u = \nu a \Delta u - f(u, t) + \varphi(x, t), \qquad u|_{\partial\Omega} = 0 \left(\text{ or } \frac{\partial u}{\partial \nu}\Big|_{\partial\Omega} = 0 \right),$$

where $x \in \Omega \in \mathbb{R}^n$, $a = \{a_{ij}\}_{i,j=1}^N$ is an $N \times N$ -matrix with positive symmetric part $a + a^* \geq \beta^2 I$, $\beta^2 > 0$, $f = (f^1, \ldots, f^N)$, $\varphi = (\varphi^1, \ldots, \varphi^N)$, $u = (u^1, \ldots, u^N)$. We assume that $\varphi(\cdot, t) \in C_b(\mathbb{R}, H)$, $\varphi'_t(\cdot, t) \in C_b(\mathbb{R}, H_{-1})$, where $H = (L_2(\Omega))^N$ and $f, f'_u, f'_t \in C(\mathbb{R}^N \times \mathbb{R}, \mathbb{R}^N)$. The functions f and φ are periodic in f with period f: f(u, t+p) = f(u, t), $f(u, t+p) = \varphi(x, t)$. Also assume the following conditions hold for all f and f and f are f and f and f are f are f and f are f are f and f are f are f and f are f and f are f and f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f and f are f and f are f are f and f are f are f and f are f are f are f and f are f are f and f are f are f and f are f are f are f and f are f and f are f and f are f are f and f are f are f and f are f and f are f are f are f are f and f are f are f and f are f are f are f are f and f are f are f are f are f are f and f are f are f are f are f and f are f are f and f are f are f are f are f and f are f are f are f are f are f and f are f and f are f and f are f are f are f are f are f are f

(6)
$$\gamma_2 |u|^{p_0} - C_2 \le (f, u) \le \gamma_1 |u|^{p_0} + C_1, \quad \gamma_i > 0, \ 2 \le p_0 \le 2n/(n-2),$$

$$(f'_u v, v) \ge -C_3(v, v), \quad |f'_u| \le C_4(|u|+1)^{p_0-2}, \quad |f'_t| \le C_5(|u|+1)^s, \quad s \le \frac{n+4}{n-2}$$

For n=2 the numbers p_0 and s can be arbitrary positive and $p \geq 2$ (for brevity). We also assume that

$$|f(u+z,t)-f(u,t)-f'_u(u,t)z| \le C_6(1+|u|+|z|)^{p_1}|z|^{1+\gamma_0}$$

where $p_1 < 4/(n-2)$, and γ_0 is positive and sufficiently small. We supplement the system (5) with the initial conditions

(7)
$$u|_{t=\tau} = u_{\tau}, \quad u_{\tau} \in H = (L_2(\Omega))^N.$$

Problem (5), (7) has (for all $u_{\tau} \in H$) a unique solution

$$u(t) \in C_b([\tau, +\infty), H) \cap L_2([\tau, \tau + T], (H_0^1(\Omega))^N), \quad \forall T \in \mathbb{R}.$$

(See, for example, [1, 2].) Thus, a periodic process $\{U(t,\tau)\}$ acting on $(L_2(\Omega))^N$ corresponds to the problem (5), (7). It was shown in [6] that the process $\{U(t,\tau)\}$ is uniformly (in $\tau \in \mathbb{R}$) asymptotically compact and $(H \times \mathbb{T}^1, H)$ -continuous. Thus Theorems 3.2 and 3.4 are applicable to $\{U(t,\tau)\}$. In particular, this process has an attractor \mathcal{A}_0 . Let us formulate a theorem on the dimension of the kernel sections $\mathcal{K}(t)$ and the attractor \mathcal{A}_0 of the problem (5), (7).

Theorem 2. Under the above assumptions on f and φ ,

(8)
$$\dim_H \mathcal{K}(t) = \dim_H \mathcal{K}(0) \le \lceil C_0/\nu^{n/2} \rceil, \quad \forall t \in \mathbb{R},$$

(9)
$$\dim_H \mathcal{A}_0 \le \lceil C_0/\nu^{n/2} + 1 \rceil.$$

The proof of (8) is given in [5] for the case of general dependence on t of f and φ . To prove (8) and (9), let us check the assumptions of Theorem 4.1 for the mapping $\Phi(u,t) = U(t,\tau)u$. Clearly, it is sufficient to establish the Lipschitz condition (4.1):

(10)
$$\begin{aligned} |\Phi(t_2, u_2) - \Phi(t_1, u_1)| &= |U(t_2, \tau)u_2 - U(t_1, \tau)u_1| \\ &= |u_2(t_2) - u_1(t_1)| \\ &\leq |u_2(t_2) - u_2(t_1)| + |u_2(t_1) - u_2(t_1)| \\ &\leq k(|u_2(\tau) - u_1(\tau)| + |t_2 - t_1|), \end{aligned}$$

where $u_1(\cdot), u_2(\cdot) \in \mathcal{K}$ and $k = k(|t_2 - t_1|, \nu)$ does not depend on u. Here and in the sequel $|u| = ||u||_H$.

We shall prove that for any complete trajectory $u(\cdot) \in \mathcal{K}$ we have

$$(11) |\partial_t u(t)| \le M,$$

where M does not depend on $u(\cdot) \in \mathcal{K}$. Clearly, (11) implies that

$$|u_2(t_2) - u_2(t_1)| \le M|t_2 - t_1|.$$

From the results of [6] and [1] it follows that for any $u_1(\cdot), u_2(\cdot) \in \mathcal{K}$,

$$(12') |u_2(t_1) - u_1(t_1)| \le M_1 |u_2(\tau) - u_1(\tau)|, M_1 = M_1 (|t_1 - \tau|, \nu).$$

Obviously, (12) and (12') give (10).

Let us verify (11). Conditions (6) provide, for any $u(\cdot) \in \mathcal{K}$ (see [1], [6])

(13)
$$|u(t)|_1 \equiv ||u(t)||_{H_1} \le M_2$$
, $t \in \mathbb{R}$, $\int_{\tau}^{T} |u(\tau_1)|_2^2 d\tau_1 \le C(|T - \tau|)$,

where $|u(t)|_2 = ||u(t)||_{H_2}$, M_2 does not depend u and t, C is a function of $|T - \tau|$. By taking the scalar product in H of the equation (5) with $\partial_t u$, we obtain, using elementary transformations,

$$(14) \qquad |\partial_t u|^2 + \gamma \nu (\nabla u, \nabla \partial_t u) \le |f(u,t)|^2 + \frac{1}{4} |\partial_t u|^2 + |\varphi|^2 + \frac{1}{4} |\partial_t u|^2.$$

By (6),

(15)
$$|f(\mathbf{u},t)|^2 \le C(1+||\mathbf{u}||_{L_{2r}}^{2r}), \qquad r = \frac{n+2}{n-2} \qquad (n>2).$$

According to the Gagliardo-Nirenberg inequality,

$$||u||_{L_{2r}} \le C|u|_2^{\vartheta}|u|_1^{1-\vartheta}, \qquad \vartheta = \frac{n}{2} - \frac{n}{2r} - 1.$$

This implies

(16)
$$||u||_{L_{2r}}^{2r} \le C^{2r} |u|_{2}^{2r\vartheta} |u|_{1}^{2r(1-\vartheta)}, \qquad 2r\vartheta = 2.$$

Since $|u|_1 \le M_2$ (see (13)), by (16) and (15),

$$(17) |f(u,t)|^2 = ||f(u,t)||_H^2 \le C_7 \left(1 + ||u||_{L_{2r}}^{2r}\right) \le C_8 \left(1 + |u|_2^2\right).$$

From (17) and (14) we deduce

$$\frac{1}{2}|\partial_t u|^2 + \frac{1}{2}\gamma \nu |\nabla u|^2 \le C_8 \left(1 + |u|_2^2\right) + |\varphi|^2.$$

Hence, integrating with respect to t, we have

$$\begin{split} \gamma \nu |u(T)|_1^2 + \int_{\tau}^T |\partial_t u|^2 \, d\tau_1 \\ & \leq \gamma \nu |u(\tau)|_1^2 + 2C_8 \bigg(T - \tau + \int_{\tau}^T |u|_2^2 \, d\tau_1 \bigg) + 2 \int_{\tau}^T |\varphi|^2 \, d\tau_1, \end{split}$$

and by (13)

(18)
$$\int_{\tau}^{T} |\partial_t u|^2 d\tau_1 \le C_5(|T - \tau|).$$

Let $\psi(t) \in C^1(\mathbb{R}, \mathbb{R})$, $\psi(t) \geq 0$, $\psi(t) = 0$ for $t \leq \tau$, and $\psi(t) \equiv 1$ for $t \geq \tau + \delta$, $\delta \ll T - \tau$. (In the sequel, $T - \tau = p + \delta$, where p is the period of the process $\{U(t,\tau)\}$.) Differentiating equation (5) in t and taking the scalar product with $\psi(t)\partial_t u$, we get

(19)
$$\frac{1}{2}\partial_{t}(\psi|\partial_{t}u|^{2}) - \frac{1}{2}\psi'_{t}|\partial_{t}u|^{2} + \psi|\partial_{t}u|_{1}^{2}$$

$$\leq -\psi(f_{u}(u,t)\partial_{t}u,\partial_{t}u) - \psi(f_{t}(u,t),\partial_{t}u) + \psi(\partial_{t}\varphi,\partial_{t}u)$$

$$\leq \psi C_{3}|\partial_{t}u|^{2} + \psi|f_{t}|_{-1}|\partial_{t}u|_{1} + \psi|\partial_{t}\varphi|_{-1}|\partial_{t}u|_{1}$$

$$\leq C_{3}\psi|\partial_{t}u|^{2} + C_{10}\psi||f_{t}||_{L_{q}}^{2} + \frac{1}{4}\psi|\partial_{t}u|_{1}^{2}$$

$$+ \psi|\partial_{t}\varphi|_{-1}^{2} + \frac{1}{4}\psi|\partial_{t}u|_{1}^{2}, \qquad q = \frac{2n}{n+2}.$$

Here we have used the following embedding reasoning: $H_1 \subset L_p$ (where p = 2n/(n-2)) $\Rightarrow H_{-1} = (H_1)^* \supset L_q$. By (6) we have

(20)
$$|f_t| \le C_5 (1 + |u|^s),$$

$$|f_t|_{-1}^2 \le C_{11} ||f_t||_{L_q}^2 = C_{11} \left(\int_{\Omega} |f_t|^q dx \right)^{2s/(qs)} \le C_{12} (1 + ||u||_{L_{sq}}^{2s}),$$

for s = (n+4)/(n-2). The Gagliardo-Nirenberg inequality implies

(21)
$$||u||_{L_{sq}} \le C|u|_2^{\vartheta}|u|_1^{1-\vartheta}, \qquad \vartheta = \frac{n}{2} - \frac{n}{sq} - 1,$$

$$||u||_{L_{sq}}^{2s} \le C^{2s}|u|_2^{2s\vartheta}|u|_1^{2s(1-\vartheta)} \le C_{13}|u|_2^2.$$

Here we have used the boundedness of $|u|_1$ for $u(\cdot) \in \mathcal{K}$. It follows from (19), (20), and (21) that

$$\frac{1}{2}\partial_t \left(\psi |\partial_t u|^2 \right) + \frac{1}{2}\psi |\partial_t u|_1^2 \le C_{14} |\partial_t u|^2 + C_{15} |u|_2^2 + |\varphi|_{-1}^2.$$

Finally, integrating over t, we obtain, using (18)

$$\frac{1}{2}|\partial_t u(t)|^2 \le C_{14} \int_{\tau}^{T} |\partial_t u|^2 d\tau_1 + C_{15} \int_{\tau}^{T} |u|_2^2 d\tau_1 + \int_{\tau}^{T} |\varphi|_{-1}^2 d\tau_1 \le C_{16}(|T - \tau|),$$

for $T \ge t \ge \tau + \delta$. The estimate (11) is established. Theorem 2 is completely proved.

EXAMPLE 3 (Dissipative hyperbolic equation with periodic terms). Consider the equation

(22)
$$\partial_t^2 u + \gamma \partial_t u = \Delta u - f(u, t) + \varphi(x, t), \qquad u|_{\partial\Omega} = 0, \ x \in \Omega \in \mathbb{R}^3,$$

where f(u,t) and $\varphi(x,t)$ are periodic in t with period p. Under conditions (see [6], [7]), Theorems 3.1 and 3.4 are applicable. Using the estimate for the Hausdorff dimension of the kernel sections of the equation (22) (see [5]), we can estimate the dimension of the attractor \mathcal{A}_0 of the process $\{U(t,\tau)\}$ corresponding to (22) (see [7]).

REFERENCES

- A. V. Babin and V. B. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
- [2] ______, Attractors of evolutionary partial differential equations and estimates of their attractors, Uspekhi Mat. Nauk 38 (1983), 133-187; English transl., Russian Math. Surveys 38 (1983), 151-213.

- [3] V. V. Chepyzhov and M. I. Vishik, Non-autonomous dynamical systems and their attractors, Appendix in the book: M. I. Vishik, Asymptotic Behavior of Solutions of Evolutionary Equations, Cambridge University Press, 1992.
- [4] _____, Non-autonomous evolution equations and their attractors, Russian J. Math. Phys. 1 (1993), 165-190.
- [5] ______, A Hausdorff dimension estimate for kernel sections of non-autonomous evolution equations, Indiana Univ. Math. J. 42 (1993), 1057-1076.
- [6] ______, Attractors of non-autonomous dynamical systems and their dimension, J. Math. Pures Appl. 73 (1994), 279–333.
- [7] ______, Attractors of periodic processes and estimates of their dimensions, Mat. Zametki (1994) (to appear).
- [8] C. M. DAFERMOS, Almost periodic processes and almost periodic solutions of evolutional equations, Proceedings of a University of Florida International Symposium (1977), Academic Press, New York, pp. 43-57.
- [9] J. M. GHIDAGHLIA AND R. TEMAM, Attractors for damped nonlinear hyperbolic equations, J. Math. Pures Appl. 66 (1987), 273-319.
- [10] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monographs, vol. 25, A.M.S., Providence, R.I., 1987.
- [11] A. HARAUX, Attractors of asymptotically compact processes and applications to non-linear partial differential equations, Preprint, Université Pierre et Marie Curie, Centre National de la Recherche Scientifique, R87031 (1987).
- [12] _____, Systèmes dynamiques dissipatifs et applications, Masson, Paris, 1991.
- [13] O. A. LADYZHENSKAYA, Mathematical Poblems in the Dynamics of a Viscous Incompressible Fluid, Nauka, Moscow, 1970. (Russian)
- [14] J. LA SALLE, Stability theory and invariance principles, vol. 1, Dynamical Systems, Academic Press, 1976, pp. 211-222.
- [15] J.-L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod and Gauthier-Villars, Paris, 1969.
- [16] G. R. Sell, Non-autonomous differential equations and topological dynamics I, II, Trans. Amer. Math. Soc. 127 (1967), 241–262, 263–283.
- [17] R. TEMAM, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, 1988.
- [18] _____, On the Theory and Numerical Analysis of the Navier-Stokes Equations, Springer-Verlag, 1974.

Manuscript received March 14, 1994

V. V. Chepyzhov and M. I. Vishik Institute for Problems of Information Transmission Russian Academy of Sciences Ermolovoy 19 Moscow 101447, GSP-4, RUSSIA