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1. Introduction

We study attractors of periodic processes corresponding to non-autonomous
evolution equations with right-hand sides periodic in time. The notion of a
process generalizes the notion of a semigroup which describes the dynamfci of
autonomous equations. We consider Cauchy problems of the type

(1) Ou=Au,t), uli—r =u,, t>T, TER.

Here A(-,t) : B1 — Ey, t € R, is a family of non-linear operators periodic in
time with period p : A(-, t+p) = A(+, t) for t € R, where E; and E, are Banach
spaces, usually with E; C Ey. The initial data u, is taken in a Banach space
E. Assume that for any 7 € R and every u, € F there exists a unique solution
u(t), t > 7, of the problem (1) such that u(t) € E for all ¢ > 7. Consider the
two-parametric family of mappings {U(t,7) : t > 7,7 € R}, U (t,7): E— E,
U(#, 7)ur = u(t), t > 7, where u(t) is the solution of the problem (1). The family
{U(¢,7)} is said to be the process corresponding to the problem (1). Evidently,
the process {U(¢, 7)} is periodic in time with period p, i.e. U(t+p, T+p) =U(t,7)
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for all t > 7, 7 € R. We use the notion of the attractor to describe the limit
behavior of the process as t — tends to infinity. The attractor A of {U(¢,7)}isa
minimal closed attracting set of the process. The attracting property of A means
that for any bounded set B C E, distg(U(¢,7)B, A) — 0 as t — 7 — +o0. The
property of minimality is the natural generalization of the invariance property
in the definition of a semigroup attractor.

One method to construct the attractor for a periodic process is to study the
attractors LA(8) of the discrete semigroups {Sn(6)}nez, where Sn(8) = U(6 +
np,6), 6 € B (see [9]). The union of these attractors is the attractor of the initial
periodic process:

A= A®5).
ScR
Another way, described in [11] and [12], is the direct investigation of w-limit sets
of the process.

We present an alternative approach. We study a continuous semigroup
{S(t) : t > O} acting in the extended phase space E x T', where T' is the
circle of length p. The operators S(t) are defined by

(2) S(t)(u, 8) = (U(6 +1, 6)u, (6 +t)modp).

It is easily seen that (2) defines a semigroup in E' X T!.

In Section 2 we formulate the main definitions and theorems on the attractors
of general processes from (3], [4] and [6] that we intend to use.

In Section 3 we prove theorems on the existence and structure of the attractor
for a periodic process. We also give some properties of the attractor which
describe the character of attraction.

In Section 4 we estimate from above the fractal and Hausdorff dimensions of
the attractors of periodic processes.

Section 5 contains applications of the above results to problems arising in

mathematical physics. We study the following equations and systems:

(i) the two-dimensional Navier-Stokes system with external forces periodic
in time;
(ii) non-autonomous reaction-diffusion system with periodic interaction fun-
ction f(u,t) and with periodic external forces ¢(z,t) (f(u,t + p) =
f(u,t), p(z,t +p) = w(, 1));
(iii) damped hyperbolic equation with periodic terms.
Note that the dimension of the attractor A of a periodic process in all the
above examples satisfies dim A < dim .A(0)+1, where .A(0) is the attractor of the
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corresponding discrete semigroup. This inequality was formulated by Haraux in
[11] as a conjecture.

Finally, notice that [3], [4] and [6] contain estimates from above for the
Hausdor{I dimension of the attractors of non-autonomous equations and systems

with quasiperiodic terms.

2. Preliminaries

First of all, we recall some definitions concerning processes and their attrac-
tors. A two-parametric family of mappings {U(t,7)} = {U(t,7) : t > 7, 7 €
R}, U(t,7) : E — E, acting in a Banach space F is said to be a process if

Ult,7)=U(t, s)U(s,7), U(r,7)=1, VTeR, 1<s<t.
A process {U(t,7)} is called periodic with period p if
Ut+p,7+p) =U(t,1), Vi>r,TeR

A set Py C FE is said to be an atfracting set of the process {U(¢,7)} if for any
7 € R and for every bounded set B C F,

(1) ' distg(U(t,7)B, Py) —» 0 (t — +00).

A set P C E is said to be a uniformly (in T € R) attracting set of the process
{U(t,7)} if (1) holds uniformly in 7 € R, i.e.

(2) supdistg(U(T + 7,7)B, P) — 0 (T — +o00).
TER

A process {U(t,7)} is called asymptotically (uniformly asymptotically) compact
if it has a compact attracting (uniformly attracting) set.

DEFINITION 1. (i) A closed set Ag C F is said to be the attractor of a process
{U(t,7)} if Ao is a minimal closed attracting set of {U(t,7)}. The minimality
means that any closed attracting set contains 4.

(ii) A closed set A; C E is said to be the uniform (in 7 € R) attractor of a
process {U(¢,7)} if A; is a minimal closed uniformly (in 7 € R) attracting set
of {U(t,7)}.

These definitions were introduced in [11] and [12]. To construct the attractor
for a periodic process, we shall use the results of [6], where we studied the
attractors for more general processes and families of processes. For the sake of
completeness, we recall the necessary definitions and theorems from [6].

Suppose we are given a family of processes {U,(t,7)}, depending on a func-
tion parameter ¢ in a complete metric space . The parameter o is called the
symbol of the process {U,(t,7)}, and X is the symbol space. By analogy, we
introduce the following definitions.
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DEFINITION 2. (i) A set Py is said to be uniformly (in o € X) atiracting for
the family of processes {U,(¢t,7)}, ¢ € %, if for any 7 € R and every bounded
set BCE,

sug distg(U,(t,7)B, Px) — 0 (t = +o0).
o€

(ii) A set Ay is said to be the uniform attractor of the family of processes
{Us(t,7)}, o € &, if it is a minimal closed uniformly (in o € X) attracting set of
that family.

A family of processes with a compact uniformly attracting set is called uni-
formly asymptotically compact. As was shown in [6] (and also in [11] and [12]
using different terminology), a uniformly asymptotically compact family of pro-
cesses always has a compact uniform attractor.

Now we shall investigate the structure of uniform attractors more closely
under some additional conditions. We assume that some strictly invariant semi-
group {T'(t) : t >0} actson X: T(¢) : ¥ — X and T(¢)X = X for all £ > 0. Let
us also assume the following translation identity:

(8) Us(t+s,7+s)=Ure)o(t,7), VoekX, t>1, t,TeR, s>0.
We define the family {S(t) : ¢ > 0} of mappings of £ x ¥ into E x X by:
(4) St)(u, o) = (Us(t, O)u, T(t)o), t>0, (uy0) e ExX.
One can easily check using (3) that {S(¢)} is a semigroup acting on E x 3:
S(tl)S(tz) = S(tl +t2) for all 1,2 > 0 and S(O) =1 (see [6])

A curve {u(s) : s € R} in F is said to be a complete trajectory of the process
{UEN}YEUR,T)u(r) =u(t) forallt > 1, ¢t,7 € R.

DEFINITION 3. The kernel K of the process {U(¢,7)} consists of all bounded
complete trajectories of {U(¢, 7)}:

K ={u(-):u(t), t €R, is a complete trajectory of {U(¢,7)}
and fJu(®)||g < Cu YVt € R}.

The set K(s) = {u(s) : u(-) € K} is called the kernel section at time ¢ = s,

seR.

In the sequel II; : Ex ¥ — E and Il : E x ¥ — 3 are the canonical
projections.

A family of operators {U,(¢,7)}, o € I, is said to be (E x X, E)-continuous
if for any fixed ¢ and 7 the mapping (u, o) — U, (¢, 7)u is continuous from E x ¥
into E.

Let us formulate the main theorem on attractors of families of processes.
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THEOREM 1. Suppose a family of processes {Uy(t,7)}, 0 € X, acting in
a space E is uniformly (in o € X) asymptotically compact and (F x Z, E)-
continuous. Moreover, suppose ¥ is a compact metric space and let {T(t)} bea
continuous strictly invariant semigroup on ¥ satisfying the translation identity
(3). Then the semigroup {S(t)} corresponding to the family {U,(t,7)}, o € X,
and acting on E x X by the formula (4) has a compact attractor A: S(t)A= A
for allt > 0. Moreover,
(i) 1A = Ay is the uniform (in o € ) attractor of the family of processes
{Us(t,7)}, 0 € X;
(i) oA = 3;
(i) Az = U,ex Ko(0). Here K, is the kernel of the process {U, (t,7)} with
symbol o € .

Note that the section K,(0) in (iii) can be replaced by any K, (t), where
teR.

Theorem 1 was proved in [6] It follows from a general theorem on semi-
group attractors (see, for example, [1], [10] and [17]) applied to the semigroup
(4). Papers [3], [4] and [6] contain many examples of different non-autonomous
dynamical systems having uniform attractors according to Theorem 1.

In Section 3 we apply Theorem 1 to the study of the attractors of periodic

processes.

3. Attractors of periodic processes

Let {U(t,7)} be a periodic process (with period p, p > 0) acting in a Banach
space E: U(t+p,7+p) =U(¢,7) for all t > 7; ¢,7 € R. Let {U,(t,7)} be the
family of processes depending on ¢ € T! (T* =R mod p is a one-dimensional
torus), defined by
(1) Us(t,7)=U({t+ 0,7+ o).

Clearly, the existence of a uniformly (in o € T!) attracting set P C E for
the family {U,(¢,7)}, o € T, is equivalent to the existence of a uniformly (in
7 € R) attracting set for the original periodic process {U(t,7)}. Note that, by
periodicity, the uniform (in 7 € R) attracting property (2.2) is equivalent to the
uniform attracting property with respect to 7 € [0, p):
sup distg(U(T + 7,7)B, P) — 0 (T — +00).
T€[0,p)

The following rotation semigroup {T'(t)} acts on the symbol space ¥ = T*:

T(t)o = (t + o) mod p, t>0,0€T.
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Clearly, the translation identity (1.3) is valid. Indeed,

Us(t+s,7+8)=U(l+s+ao,7+5+0)
=U(t+ (s + o)(modp), 7 + (s + ¢)(mod p))
=U@t+T(s)o, 7+ T(8)0) = Ur(s)s(t, 7).

Consequently, the family {U,(t,7)}, o € T, generates the semigroup {S(t)}
acting in the extended phase space E x T' by the formula (2.4):

(2) Si)(u, o) = ({UE+o, o)y, (t+ o) mod p)), t>0, (v, 0) € ExT.

Let us formulate the theorem on the attractor of a periodic process.

THEOREM 1. Let {U(t,7)} be a periodic, uniformly (in T € R) asymptotically
compact, and (E x T, E)-continuous process. Then the semigroup {S(¢) : t > 0}
acting in E x T! by means of the formula (2) has a compact, strictly invariant
attractor A: S(t)A = A for all t > 0. Moreover,

(i) M A = Ay is the uniform (in T € R) attractor of the process {U(t,7)};
(il) A1 = Uyep, py=m K(0), where K(o) is the section at time t = o of the
kernel K of the process {U(t,7)}.

Proor. This follows from Theorem 2.1.

REMARK 1. Notice that the set A; = Ap also serves as the (non-uniform)
attractor of the periodic process {U(t,7)}. In other words, under the assump-
tions of Theorem 1, the uniform attractor of the periodic process coincides with
the (non-uniform) attractor of this process.

The proof of this assertion is given in [7]. For more general processes it is,
in general, not true. A counter-example was constructed by Haraux in [12].

Below we study in more detail the kernel sections K(t), t € R, of a periodic
process {U(t, 7)} satisfying the assumptions of Theorem 1.

Notice that if u(-) € K then u,(-) € K, where u,(t) = u(t + p). Therefore,

(3) K{t+p) = K@), vt e R.
PROPOSITION 2. The following identity is valid:
(4) U(t,7)K(r) = K(¢), t>T t,TeR

This follows directly from the definition of kernel sections.
We shall prove below that the attractor A of the periodic process {U(2,7)}
can be obtained in another way using attractors of the corresponding discrete
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semigroups. Let us introduce the family of discrete semigroups {S,(6) : n € Z; }

depending on a parameter 6 € T!:
(5) 8.(8) =U(6 + np, §), Sn(6): E— E, ne€Zy, 6 €T
For any 6 € T! the operators {S,(8) : n € Z} form a semigroup. Indeed,

Sn(6) =U(np + 6,6)
=U(np+6n—-Lp+8U((n—1p+6(n—-2)p+6)..Up+606)
=(U(p+6,6))" = (5.(6))™

ProprosITION 3. Under the assumptions of Theorem 1, the kernel section
K(6) is the attractor of the discrete semigroup {Sn(6)}.

PROOF. It follows from the (E x T!, E)-continuity of the process {U(t,7)}
that each semigroup {5y, (6)} is (E, E)-continuous. At the same time, it is asymp-
totically compact, because the periodic process {U(¢, )} is uniformly asymptoti-
cally compact. These two facts imply that each semigroup {5, (6)} has a compact
attractor A(6):

(6) Sn(6).A(6) = A(6), Vne€Zy, A(6) € E.
On the other hand, by (3) and (4),
Sn(86)K(8) = U(np + 6,6)K(6) = K(np+ 6) = K(6),

i.e. K(6) is bounded and strictly invariant (with respect to {S,(6)}) set. Hence,
by the attracting property, X(8) C A(8) for all § € T!. Let us check the reverse
inclusion. Let us € A(6). We shall construct a bounded complete trajectory
u(t),t € R, of the process {U(t,7)} such that u(§) = us. Put u(t) = U(t, 6)us
for t > 6. Evidently, for £ > é the function u(¢) is a trajectory of the process.
Let us extend u(t) for t < §. According to (6) the equation

S1(8)us—1 = us

has at least one solution us_1 € A(6). Now we put u(é — p) = us_; and define
u(t) for § —p <t < § by u(t) = U(t,6 — p)us—1. Clearly, u(t) is a trajectory
of {U(t,7)} for t > 6 — p. Continuing this procedure one can construct the
trajectory u(t) for t > § —np so that u(6 —np) € A(6). Letting n — +o0o we get a
complete trajectory of the process. Let us show that this trajectory is bounded.
The set A(6) is bounded. The process {U(t,7)} is uniformly asymptotically
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compact, therefore, for some compact set P, € F there exists T' > § such that
U(t,6)A(8) C By for t > T. Here By = O.(P;) is the e-neighborhood of P;
for some e. In particular, u(t + np) = U(t,8)u(6 + np) C B; for all £ > T and
n € Z. Therefore, u(t1) € By for any ¢; € R, i.e. the trajectory u(t) is bounded.
Finally, us belongs to the bounded complete trajectory u(t), us = u(6) € X(6),
and A(6) C K(6). Hence, A(6) = K(6). O

Now we shall formulate some properties of the kernel sections XC(§) under the
condition that for any fixed 7 € R the periodic process {U(t,7)} is continuous
as a mapping (u,t) — U(t,7)u from E x R into E.

THEOREM 4. Suppose a periodic process {U(t,T)} satisfies the assumptions
of Theorem 1 and it is continuous with respect to u € E and t > T for any fixed
7. Then:

(i) for any e > 0 there exists § > 0 such that |t — s| < & implies
(7) distp(K(t), K(s)) <&
(i) for any bounded subset B of E,

(8) distg(U(t,7)B,K(t)) = 0 as t — +co.

The proof of Theorem 4 can be found in [7].

REMARK 2. The property (8) can be strengthened in the following way:

sup distg(U(T + 7,7)B,K(T+ 7)) — 0 as T — +o0.
TER

A process {U(t,7)} has the backward uniqueness property, if U(t,7)u; =

U(t, 7)ug implies that u; = us.

PROPOSITION 5. If a periodic process {U(t,T)} satisfies the assumptions of
Theorem 1 and has the backward uniqueness property then the mapping U(t, ) :
K(1) — K(t) is a homeomorphism.

This follows directly from Proposition 1.
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4. Fractal and Hausdorff dimensions
of the attractors of periodic processes

We recall the definitions of the fractal and Hausdorff dimensions of subsets
of a Banach space E. Let X be a compact subset of E. We denote by B,(z) the
ball in E of radius r with center at z. Given d € R, and € > 0, we set

pua(X,d, €) = inf er,
where the inf is taken over all coverings of X by balls B,,(z;) of radii r; < e.
Let px(X,d) denote the d-dimensional Hausdorff measure of X:
pa(X,d) = lin%) pe(X,d,e) = sup pg(X,d,e).
E—> e>0

The quantity dy(X) = inf{d : pa(X,d) = 0} is the Hausdorff dimension of
X. By analogy, one introduces the fractal dimension of X. Let n(e, X) be the
minimal number of balls having radii € which cover X. The d-dimensional fractal
measure is defined by

pr(X,d) = limsupedn(s,X) = limsup pr(X,d, ).
e—0

e—0

The fractal dimension of X is
dp(X) =inf{d : pr(X,d) = 0}.
It is clear that ug (X, d) < pr(X,d) and dg(X) < dp(X).

Notice that in the definitions of the Hausdorff and fractal dimensions we may
use coverings by balls with centers belonging to X. We shall consider only such
coverings.

Let K be a compact subset of E. Consider a mapping ® : K x [0, 7> E
such that ®(z,0) = z for all z € K. We assume that & satisfies the Lipschitz
condition with respect to z and #:

(1) @(e1,t1) — B(2, t2)l| 5 < k(o1 — z2||5 + [t1 — ta]),
V1,39 € Ky, Viy,t5 € [O,T].

PROPOSITION 1. Let K; = ®(Ky,t), t € [0,T]. Then
(2 dr(K:) < dr(Ko),

(3) du(K;) < du(Ko).
PROOF. Fix € > 0 and let Ko C U}, B.(z;) with all z; € Kg. Then

N N
K C U ®(Be(2:),t) C | Ber(®(2i,1))

i=1
by (1). Therefore, up(Kz,d, ek) < k?up(Ky,d, €), i.e. pr(Ky d) < kduF(Ko,d).
The inequality (2) is proved. Using the same reasoning one can establish (3).0
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PROPOSITION 2. Let E = U,¢(o, 1) 8(Ko,t). Then

(4) dr(E) < dr(Ko) +1,
(5) du(E) < dg(Ko) + 1.

PrOOF. Fix € > 0 and cover K, by balls with radii ¢/(2k) and centers
z1,...,Zn. Then for any t € [0, 7] the balls B./2(®(21,1)),. .- s Bej2(®(z N, t))
cover Ky (by (1)). Now 0 = tg < t1 < ... < t, = T be a partition of [0,T],
where 0 < t;41 — t; < €/(2k). Then n < 2Tk/e. Consider the collection of balls
{B.(®(z;,t:)) : j =1,...,N,i =1,...,n}. This collection covers E. Indeed
vV &(z,t) Iz, : ||B(z,t) — <I>(:L'J~,t)|l < ¢g/2 and 3t;: |t —t;| < g/(2k); then

|®(z, t) — ®(z;,t:)|| <[ ®(,t) — (x5, D)
+ ”q)(:lﬁj,t) - @(wj,ti)ﬂ < 5/2 + kE/(2k) =€&.

Hence, ®(z,t) € B(®(z;,t:)). Therefore,
d
pr(E,d+1,6) < nNe?t! < 2TkNe® = 2Tk(2k)dN(2k>

ie. pr(B,d+1,€) < T(2k)* ur(Ko,d,e/(2k)), and pr(E,d+1) < T(2k)4+1 x
pr(Ko,d). Finally, dp(E) < dp(Ko) + 1. Estimate (4) is proved.

To prove (5), we cover the set Ko by balls with (maybe) different radii:
{B:,(z;)}, where &; < ¢/(2k). Then for any fixed point z;, we partition the
segment [0,7] into intervals of length 7; < £;/(2k) by points 0 = <t <

. < t},, = T. Then n; < 2Tk/e;. The family of balls {Bage; (®(z;,t)) : j =

.,N,i=1,...,n;} covers E. Let us estimate pr(E,d+1,e) from above.
2Tk
#H(n—n,d‘l‘l E)<Zzed+1<z d+1
i i=1

= 2kT Z(s,)d 2Ic)d+1TZ ( )d‘
Hence
pu(E,d+1,e) < (2k)* T py (Ko, d, e/ (2k)).
The last inequality implies
pu(E,d+1) < (2k)H 1 Tug(Ko,d) and  du(E) < du(Ko) +1.
O

Now we apply the above results to the periodic process {U(¢,7)} under con-

sideration.
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THEOREM 3. Suppose the periodic process {U(t, )} satisfies the assumptions
of Theorem 3.1, and for any compact set K € E the mapping (u,t) — U(t, T)u
from K x [t,7 4+ T] into E satisfies the Lipschitz condition (1). Then
(i) dr(K(t)) = dr(K(0)),da(K(t)) = du(K(0)) for all t € R, where K is
the kernel of the process {U(t,7)},
(ii) dr(Ap) < dr(K(0)) + 1,du(Ag) < du(K(0)) + 1, where Ay is the at-
tractor of the process {U(t,7)}.

PROOF. Proposition 3.2 implies that U(t,0)K(0) = K(¢). Therefore, by
Proposition 1, dp(K(t)) < dr(K(0)). On the other hand, U(np, t)K(t) = K(np) =
K(0) (see (3.3)) if np > t, therefore, dp(K(t)) > dr(K(0)), and so dr(K(t)) =
dr(K(0)). The same reasoning works for the Hausdorff dimension. Part (ii)
follows directly from Proposition 2. ]

Finally, we conclude that, under certain assumptions, the finite dimension-
ality of the attractor of a periodic process follows from the finite dimensionality
of the kernel sections or (by Proposition 3.3) from the finite dimensionality of
the attractors of the discrete semigroups {S,(8)}.

5. Evolution equations with periodic terms

Consider equations of the type:
(1) at'U, = A(’U,,t), ult:r = Ur, t27, TE R!

where for any ¢ € R the operator A(-,t) maps a Banach space E; into Ey, where
E, C Ey. We assume that A(-,t) is time-periodic with period p: A(-,t+p) =
A(-,t). The initial conditions u, of the problem (1) belong to a Banach space
E with E, € E C Ep. We assume that for any 7 € R and arbitrary u, € E the
problem (1) has a unique solution u(t) € E,¢ > 7. The meaning of the expression
“u(t) is a solution of (1)” should be clarified in each particular case. Consider
the two-parametric family of operators {U(t,7) : t > 7,7 € R},U(t,7) : E — E,
U(t, T)ur = u(t), where u(t) is the solution of (1). Evidently, {U(¢,7)} is a
periodic process acting in E. The kernel K of this process consists of all bounded
solutions u(t) of (1) defined for all t € R: ||u(t)]|g < C, for all t € R.

Now we present some examples of dynamical systems arising in mathematical
physics. These equations are particular cases of equations with almost periodic
and quasiperiodic terms considered in {3], [4], [6]. In these works we have proved
the uniform asymptotic compactness and continuity of the corresponding pro-
cesses. We shall also use the results from [5] on estimating the dimension of

kernel sections of non-autonomous equations.
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ExAMPLE 1 (Two-dimensional Navier-Stokes system with periodic external

force). Excluding the pressure, the system can be written in the form

(2) Oyu + Lu + B(u,u) = @, T = (z1,23) € ) € R,

2
L =—vIIA, B(u,u) = HZui(?m,.u, w = Ilpg, ulag =0,
i=1

where u = (ul,u?), ¢ = (1, ¥?) (see [13], [18], [1]). By H (resp. H;) we denote,
as usual, the closure of the set Vg = {v : v € (C§(2))?, (V,v) = 0} in the norm
Il (Il ll1) of the space (L2(£2))? ((H1(£2))2), by II the orthogonal projection of
(L2(2))? on H and its different extensions. We assume that (- ,t) € Cy(R, H) is
periodic in ¢ with period p, and moreover, for any 7 € R and 7' > 0 the function
wi(+,t) € La([r,7+ T],H_1), where H_; = (H1)*. The initial conditions are

posed at t = T:
(3) Ulp=r = Ur, ur € H (E=H).

It is well known that the problem (2), (3) is uniquely solvable in the class of
functions satisfying u(t) € Cy([7, +00), H)N Lo([7,7+T), H1), for all T' > 0, and
Owu € Lo([r, 7+ T), H_1). Thus, the process {U(t,7) : t > 7}, U, T)u, = u(t),
acting on H and corresponding to (2), (3) is defined. The process {U(¢,7)} is
uniformly (in 7 € R) asymptotically compact and (H x T!, H)-continuous (see
[6]). Therefore, Theorem 3.1 is applicable. In particular, the set Ay = A; =
Usem K(0) is the attractor and uniform attractor of the process {U(t,7)}; K is
the kernel of the process. It is easily seen that the mapping (u,t) — U(¢,7)u
is continuous in (u,t) € H x R, for any fixed 7 € R. Hence, Theorem 3.4 also

applies.

In [5] we proved the following estimate for the Hausdorff dimension of the
kernel sections /C(t) of the problem (2), (3):

(4) dimg K(t) < [%(M_l(hpﬁ))l/?] ,  VtER,

where M_1(|¢|*) = 2 J7 l¢(s)[21 ds, the constant C' does not depend on » and
t. Here and below [a] = min {i € N: a < ¢{}. Theorem 4.1, when applied to the
problem (2), (3), can be formulated as follows.

THEOREM 1. Suppose p(z,t) satisfies the above conditions. Then

Q) du(K(t)) =du(K(0)), VieR,
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(i) (40) < d(K(0) +1 € | SO +1].

Analogous estimates are also valid for the fractal dimension. The complete
proof of Theorem 1 will be given in [7]. The main point is the proof of the
Lipschitz condition (4.1) for the problem (2), (3).

EXAMPLE 2 (Reaction-diffusion system with periodic terms). Consider the

U _ 0),
%

(5) Ou = valu — f(u,t) + ¢(z,t), ulan =0 ( or %

following system:

where z € € R", a = {a,-j},f\,;ﬁl is an N x N-matrix with positive sym-
metric part a 4+ a* > B2L,6% > 0,f = (f1,..., V), ¢ = (¥, ... v o), u =
(u!,...,uY). We assume that ¢(-,t) € Co(R, H), ¢i(-,t) € Cy(R, H_1), where
H = (Ly(Q2))" and f, fi, f{ € CRY x R,R¥). The functions f and @ are peri-
odic in ¢ with period p: f(u,t+ p) = f(u,t), p(z,t+ p) = p(z,t). Also assume
the following conditions hold for all ¢ € R and u,v € RY:

(6) elulfo —Cy < (f,u) < mlulP° + Cy, 7% >0, 2<po < 2n/(n-2),

(fu0) 2 =Co(w0), 1701 < Callul+D™7%, 1] < Clful+1y’, s 22,

For n = 2 the numbers py and s can be arbitrary positive and p > 2 (for brevity).

We also assume that
|F(u+ 2,8) = £(u,8) — fo(w,8)2] < Co(1 4 [u] + |2])P*|2[ o,

where p; < 4/(n —2), and -y is positive and sufficiently small. We supplement
the system (5) with the initial conditions

(7) ult=r =ur,  u, € H = (Ly(Q))V.
Problem (5), (7) has (for all u, € H) a unique solution
u(t) € Co([r, +00), H) N La([r, 7 + T, (H5(M))Y), VT eR.

(See, for example, [1, 2].) Thus, a periodic process {U(t, 7)} acting on (L2 ()N
corresponds to the problem (5), (7). It was shown in [6] that the process {U (¢, 7)}
is uniformly (in 7 € R) asymptotically compact and (H x T!, H)-continuous.
Thus Theorems 3.2 and 3.4 are applicable to {U(%, 7)}. In particular, this process
has an attractor 4g. Let us formulate a theorem on the dimension of the kernel
sections K(t) and the attractor Ag of the problem (5), (7).
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THEOREM 2. Under the above assumptions on f and ¢,

(8) dimy K(t) = dimg K(0) < [Co/v™?],  VteR,
(9) dimg Ap < [Co/v™? +1].

The proof of (8) is given in [5] for the case of general dependence on ¢ of f
and ¢. To prove (8) and (9), let us check the assumptions of Theorem 4.1 for
the mapping ®(u,t) = U(t, 7)u. Clearly, it is sufficient to establish the Lipschitz
condition (4.1):

(10 |®(te, u2) — ®(t1,u1)| = |U(t2, T)uz — U(t1, T)ua|
= |ua(t2) — u1(ta)|
< |ua(t2) — uz(t)| + Jua(ty) — ua(ta)]
< k(luz(r) — ua(r)| + [t2 — tal),

where u;(-),u2(-) € K and k = k(|t2 — t1],v) does not depend on u. Here and
in the sequel |u| = ||u||H.
We shall prove that for any complete trajectory u(-) € K we have

(11) |Byu(t) < M,

where M does not depend on u(-) € K. Clearly, (11) implies that

(12) luz(tz2) — uz2(ta)| < Mtz — t].

From the results of [6] and [1] it follows that for any u;(-),u2(-) € K,
(129 lua(t1) — w1(t1)] € Mi|ua(7) — ua(7)], My, = My(Jty — 7|, v).

Obviously, (12) and (12’) give (10).
Let us verify (11). Conditions (6) provide, for any u(-) € K (see [1], [6])

T
13)  |u@®)l = llu@)lla < M2, tER, / lu(r1)|3 dr < C(IT — 7)),

where |u(t)|z = ||w(2)|| z,, M2 does not depend u and ¢, C is a function of [T —7|.
By taking the scalar product in H of the equation (5) with 0;u, we obtain, using
elementary transformations,

1 1
(14)  [Bul* +yw(Vu, Vo) < |f(w, ) + 710,ul + |0l + 7 100ul”,
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By (6),
2 2 _
(15) fw P sCO+IulE,),  r=""5 (n>2).

According to the Gagliardo-Nirenberg inequality,

lullza, < Clufflull™,  9=3 - —1.
This implies
(16) ;. < Ol 7, 29 =2
Since |u|; < M, (see (13)), by (16) and (15),
(17) |f () = | f(w, )% < Cr (1 + [T, ) < Cs (14 [uf3).

From (17) and (14) we deduce
1 1
§|3t“|2 + 5’7"|V“|2 < Cs (1 + [ul3) + [l

Hence, integrating with respect to ¢, we have

: T
()2 + / \Beul? dry

T

T T
< ywlu(r)[? + 2Cs (T 7+ [ |u|§dn) +2 [ loPan,
and by (13)

T
(18) / 1Bl dry < Cs(IT — 7).

r

Let ¥(t) € CY(R,R), ¥() > 0, ¥(t) =0 fort < 7, and ¥(t) = 1for ¢t > 7 +6,
6 €« T — 7. (In the sequel, T — 7 = p+ §, where p is the period of the process
{U(¢t,7)}.) Differentiating equation (5) in ¢ and taking the scalar product with
¥ (t)Byu, we get

(19) 50100 — SUHIdl? + yil?
< — ¥(fulu, £)Beu, Bpu) — P(fi(u, 1), Bru) + ¥(Osp, Opu)
< YCs|B;ul® + 9| fel ~118eulr + 18| -1/8puls
< Cwloual? + Cuopl ol + J910eul?

2n
n+2

1
+ Pl0ep|?, + Z’/"at“'%’ g=
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Here we have used the following embedding reasoning: H; C L, (where p =
2n/(n —2)) = H_; = (Hy)* D L,. By (6) we have

el <Cs5(1+ [ul?),

(20) 2s/(zs)
A2y < Culfl?, = Cu ( / |ft|4dx) < Cu(1+ [uliZ, ),

for s = (n+4)/(n — 2). The Gagliardo-Nirenberg inequality implies
- n n
lullz,, <Clul§luli™, #=7-—-1,
(21) , 2 5q
lilz;, < C*[ulf*?|ufi*™ < Cuslul}.

Here we have used the boundedness of |u|; for u(-) € K. It follows from (19),
(20), and (21) that

1 1
50 (¥100ul®) + 5910eul] < Craldeul® + Cuslulf + ol 1.

Finally, integrating over ¢, we obtain, using (18)

1 T T T
3100 < Cua [ 10uPar+Cus [ JuiBan + [ lof2adm < Cro(IT -7,

T

for T >t > 7+ 6. The estimate (11) is established. Theorem 2 is completely
proved. O

ExaMPLE 3 (Dissipative hyperbolic equation with periodic terms). Consider

the equation
(22) O2u + 0w = Au — f(u,t) + o(z, 1), ulgn =0, € Q € R3,

where f(u,t) and ¢(z,t) are periodic in ¢ with period p. Under conditions (see [6],
[7]), Theorems 3.1 and 3.4 are applicable. Using the estimate for the Hausdorff
dimension of the kernel sections of the equation (22) (see [5]), we can estimate
the dimension of the attractor Ay of the process {U(t,7)} corresponding to (22)
(see [7]).
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